Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a, Xét tam giác AED và tam giác CED có :
cạnh ED chung
góc ADE = góc CDE = 90độ
AD = CD ( vì D là trung điểm cạnh AC )
Do đó : tam giác AED = tam giác CED ( c.g.c )
=> AE = CE ( cạnh tương ứng )
Vậy tam giác AEC cân tại E
b, Xét tam giác ABC có góc A = 90độ nên :
góc B + góc C = 90độ
mà góc C = góc EAC ( vì tam giác AEC cân theo câu a )
=> góc B + góc EAC = 90độ
Ta có : góc A = góc BAE + góc EAC = 90độ
=> góc B = góc BAE ( vì cùng phụ với góc EAC )
=> tam giác ABE cân tại E
=> AE = BE ( * )
mà AE = CE ( theo câu a )
=> BE = CE và điểm E nằm trên cạnh BC
=> E là trung điểm của BC
=> BE = CE = \(\frac{BC}{2}\) (1)
Theo bài cho : 2AB = BC
=> AB = \(\frac{BC}{2}\) (2)
Từ (1) và (2) suy ra : AB = BE và BE = AE ( theo ( * ) )
=> AB = BE = AE
Vậy tam giác ABE đều .
Học tốt
B A C M D E
Gọi M là trung điểm của BC
a) Xét 2 tam giác vuông : \(\Delta\)AED và \(\Delta\)CED có :
\(\hept{\begin{cases}AD=CD\left(gt\right)\\\widehat{EAD}=\widehat{EDC}\left(=90^{\text{o}}\right)\\ED\text{ chung}\end{cases}}\Rightarrow\Delta AED=\Delta CED\left(c.g.c\right)\)
=> AE = EC (cạnh tương ứng)
=> \(\Delta\)AEC cân tại E
b) Vì trong 1 tam giác vuông trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền
=> AM = 1/2 BC
=> AM = BM
Lại có BM = AB
=> AB = AM = BM
=> TAM GIÁC ABE đều
A B C E D 1 2 1 2 3
a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:
AE=ED(gt)
BE=EC(E là trug điểm của BC)
\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)
=> \(\Delta ABE\)= \(\Delta DCE\)(c.g.c)
b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)
mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)
c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:
AE là cạnh chung
AB=AC(gt)
BE=EC(E là trug điểm của BC)
=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)
=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng)
mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)
=> AE vuông góc với BC (đpcm)
p/s: tớ làm 1 bài thui nha :)) dài quá
Để tui bài 2!
a) Xét tam giác AKB và tam giác AKC có:
\(AB=AC\) (gt)
\(BK=CK\) (do K là trung điểm BC)
\(AK\) (cạnh chung)
Do đó \(\Delta AKB=\Delta AKC\) (1)
b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)
Suy ra AK vuông góc với BC (2)
c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))
Mà \(\widehat{AKC}=90^o\) (CMT câu b)
Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)
Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)
Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)
Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)
Từ (1),(2) và (3) ta có đpcm.
a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ
AC < AB ( 65 độ > 25 độ)
b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)
=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)
c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC
=> BEC = BAC = 90 độ
=> tam giác BEC vuông tại E (đpcm)
d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)
Câu hỏi của đoàn kiều oanh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Bài 1 :
a) Vì \(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABC\)ta có :
\(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}=\frac{110^0}{2}=55^0\)
b) Xét \(\Delta ABH\)và \(\Delta ACH\)có :
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AB=AC\left(gt\right)\)
\(AH\)chung
=> \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)(hai góc tương ứng)
=> AH là tia phân giác của góc A
Bài 2 : a) Xét \(\Delta ABC\)ta có :
AB2 + BC2 = AC2(định lí)
=> 62 + 82 = AC2
=> 36 + 64 = AC2
=> AC2 = 100
=> AC = 10(cm)
b) Xét \(\Delta ABE\)và \(\Delta AHE\)có :
\(\widehat{B}=\widehat{H}=90^0\)
AE chung
\(\widehat{BAE}=\widehat{HAE}\left(gt\right)\)
=> \(\Delta ABE=\Delta AHE\left(ch-gn\right)\)
c) Vì \(\Delta ABE=\Delta AHE\)=> AB = AH => \(\Delta ABH\)cân tại A
a: ΔABC vuông tại A
mà AE là trung tuyến
nên EA=EB=BC/2
mà BA=BC/2
nên EA=EB=BA
=>ΔBAE đều
b: ΔBAE đều
nên góc ABC=60 độ
=>góc ACB=30 độ
=>góc AEC=180-2*30=120 độ