Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O x z t m y
a) ta có zm cắt xy tại O (gt)
-> \(\widehat{xOz}\)và \(\widehat{mOy}\)là 2 góc đồng vị (tính chất)
=>\(\widehat{xOz}=\widehat{mOy}\)(tính chất)
b) vì Oz là tia phân giác của góc \(\widehat{xOt}\)(gt)
=>\(\widehat{xOz}=\widehat{zOt}\)(tính chất)
mà \(\widehat{xOz}=\widehat{mOy}\left(cmt\right)\)
=>\(\widehat{zOt}=\widehat{mOy}\)
c)ta có
\(\widehat{yOz}=\widehat{zOt}+\widehat{tOy}\)
và \(\widehat{mOt}=\widehat{mOy}+\widehat{yOt}\)
vì \(\widehat{tOy}\)là góc chung, \(\widehat{zOt}=\widehat{mOy}\left(cmt\right)\)
=>\(\widehat{yOz}=\widehat{mOt}\)
O x y m n
Vì Om là tia phân giác của góc xOy nên \(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}\)
Ta có: \(\widehat{nOx}+\widehat{mOx}=\widehat{mOy}+\widehat{nOy}=180^o\)
\(\Rightarrow\hept{\begin{cases}\widehat{nOx}=180^o-\widehat{mOx}\\\widehat{nOy}=180^o-\widehat{mOy}\end{cases}}\)
Mà \(\widehat{xOm}=\widehat{yOm}\) (cmt)
\(\Rightarrow\widehat{nOx}=\widehat{nOy}\)
Bây giờ mình không thể gửi hình ảnh của hình lên đây được bạn inb cho mình mình gửi cho nhé :))
O x y z t
^xOz + ^zOy = 180 (2 góc kề bù)
^xOz + ^xOt = 180 (2 góc kề bù)
-> ^xOt = ^yOz
a) Xét tam giác ABN và tam giác ACM:
+ AB = AC (gt).
+ \(\widehat{A}\) chung
+ AM = AN (gt).
\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).
\(\Rightarrow\) BN = CM (2 cạnh tương ứng).
b) Ta có: AB = AM + MB; AC = AN + NC.
Mà AB = AC (gt); AM = AN (gt).
\(\Rightarrow\) MB = NC.
Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)
\(\widehat{CNI}+\widehat{ANI}=180^{o}.\)
Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).
\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)
Xét tam giác BIM và tam giác CIN:
+ \(\widehat{BMI}=\widehat{CNI}(cmt).\)
+ \(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).
+ MB = NC (cmt).
\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).
c) Xét tam giác BAI và tam giác CAI có:
+ AI chung.
+ AB = AC (gt).
+ BI = CI (Tam giác BIM = Tam giác CIN)
\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).
\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)
d) Xét tam giác AMN có: AM = AN (gt).
\(\Rightarrow\) Tam giác AMN cân tại A.
\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)
Xét tam giác ABC có: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)
Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)
Vẽ giúp hình đc ạ