K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

a) Xét \(\Delta AEB\) và \(\Delta ADC:\)

AE = AD (gt).

\(\widehat{A}chung.\)

AB = AC \((\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)

\(\Rightarrow BE=CD.\)

b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\) 

\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)

Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)

Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)

\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)

Xét \(\Delta KBD\) và \(\Delta KCE:\)

\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)

BD = CE (cmt).

\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)

\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)

c) Xét \(\Delta AKB\) và \(\Delta AKC:\)

\(AKchung.\)

AB = AC (\(\Delta ABC\) cân tại A).

KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)

\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)

\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)

Xét \(\Delta ABC\) cân tại A:

AK là phân giác của \(\widehat{A}\left(cmt\right).\)

\(\Rightarrow\) AK là đường cao.

\(\Rightarrow AK\perp BC.\)

14 tháng 3 2022

cảm ơn bạn nhiều

 

7 tháng 6 2019

22 tháng 2 2022

a, Xét tam giác ABE và tam giác ACD

AB = AC 

AE = AD 

^A _ chung 

Vậy tam giác ABE = tam giác ACD (c.g.c) 

=> BE = CD ( 2 cạnh tương ứng ) 

=> ^ABE = ^ACD ( 2 góc tương ứng ) 

b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC 

Xét tam giác KBD và tam giác KCE có 

^BKD = ^CKE ( đối đỉnh ) 

^KBD = ^KCE (cmt) 

BD = CE (cmt) 

Vậy tam giác KBD = tam giác KCE (g.c.g) 

c, Xét tam giác ABH và tam giác ACH có 

^B = ^C 

AH _ chung 

AB = AC 

Vậy tam giác ABH = tam giác ACH ( c.g.c ) 

=> ^BAH = ^CAH ( 2 góc tương ứng ) 

=> AH là đường phân giác 

hay AK là đường phân giác 

d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao 

hay AK vuông BC 

e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)

23 tháng 2 2022

em học lớp 7 ạ

 

29 tháng 11 2021

Tham Khảo nha bạn :

https://olm.vn/hoi-dap/detail/21858656221.html

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

a: Xet ΔAEB và ΔADC có

AE=AD

góc A chung

AB=AC

=>ΔAEB=ΔADC

=>BE=CD

b: Xet ΔKDB và ΔKEC có

góc KDB=góc KEC

DB=EC

góc KBD=góc KCE

=>ΔKBD=ΔKCE

c: Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

=>ΔABK=ΔACK

=>góc BAK=góc CAK

=>AK là phân giác của góc BAC

d: ΔABC cân tại A

mà AI là phân giác

nên AI vuông góc BC

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A,+tr%C3%AAn+c%E1%BA%A1nh+Ab+l%E1%BA%A5y+%C4%91i%E1%BB%83m+d+Tren+Ac+l%E1%BA%A5y+di%E1%BB%83m+E+sao+cho+AD=AE.+G%E1%BB%8Di+M+l%C3%A0+giao+%C4%91i%E1%BB%83m+BE+v%C3%A0+CD+CMR+:+a,+BE=CD+b,+tam+gi%C3%A1c+BMD+=+TAM+GI%C3%81C+CME+C,+AM+l%C3%A0+ph%C3%A2n+gi%C3%A1c+BAC+gi%E1%BA%A3i+gi%C3%BAp+mik+v%E1%BB%9Bi+...+k%E1%BA%BB+giao+%C4%91i%E1%BB%83m+nh%C6%B0+th%E1%BA%BF+n%C3%A0o+v%E1%BA%ADy+?&id=364664

13 tháng 6 2019

A B C D E K

Cm: a) Xét t/giác ADC và t/giác AEB

có:  AC = AB (gt)

 góc A : chung

  AD = AE (gt)

=> t/giác ADC = t/giác AEB (c.g.c)

=> DC = BE (hai cạnh tương ứng)

b) Ta có: AD + DB = AB

AE + EC = AC

Mà AB = AC (gt); AD = AE (gt)

=> DB = EC

Ta lại có:

góc BDC là góc ngoài của t/giác ADC

=> góc BDC = góc A + góc ACD 

góc BEC là góc ngoài của t/giác ABE

=> góc BEC = góc A + góc ABE

Mà góc ACD = góc ABE

=> góc BDC = góc BEC hay góc BDK = góc KEC

Xét t/giác KBD và t/giá KCE

có góc DBK = góc ECK (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  góc BDK = góc EKC (cmt)

=> t/giác KBD = t/giác KCE

c) Xét t/giác ABK và t/giác ACK

có AB = AC (gt)

 AK : chung

 BK = CK (vì t/giác KBD = t/giác KCE)

=> t/giác ABK = t/giác ACK (c.c.c)

=> góc BAK = góc CAK (hai góc tương ứng)

=> AK là tia p/giác của góc A

d) Ta có: AD = AE (gt)

=> A thuộc đường trung trực của DE 

DK = KE (vì t/giác KBD = t/giác KCE)

=> K thuộc đường trung trực của DE

DO A khác K => AK là đường trung trực của DE

e) Ta có: AD = AE

=> t/giác ADE cân tại A

=> góc ADE = góc AED = \(\frac{180^0-\widehat{A}}{2}\) (1)

Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => góc ADE = góc B

Mà góc ADE và góc B ở vị trí đồng vị

=> AE // BC (Đpcm)

12 tháng 2 2018

A B C E D K

12 tháng 2 2018

a, ta có:

+/ \(\Delta\)ABC cân tại A=> \(\widehat{ABC}=\widehat{ACB}\)và AB=AC

+/AB=AC(gt)

AD+BD=AE+CE

Mà AD=AE(gt)

SUY RA:BD=CE

Xét \(\Delta BCD\)và \(\Delta CEB\)

BC chung

\(\widehat{ABC}=\widehat{ACB}\)(cmt)

BD=CE(cmt)

Suy ra:  \(\Delta BCD\)\(\Delta CEB\)

=>BE=CD(đpcm)