Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(HD=\dfrac{9^2}{12}=\dfrac{81}{12}=\dfrac{27}{4}\left(cm\right)\)
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
2: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: CD=AB(1)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(CD^2=BH\cdot BC\)
Xét tam ABH có góc H = 90 độ(gt)
Theo định lí Pitago ta có:
\(BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=30^2-24^2=900-576=324\)
\(\Rightarrow BH=\sqrt{324}=18\left(cm\right)\)
Xét tam AHM có góc H = 90 độ(gt)
Theo định lí Pitago ta có
\(HM^2=AM^2-AH^2=25^2-24^2=625-576=49\)
\(HM=\sqrt{49}=7\left(cm\right)\)
Xét tam ABC có
BM=BH+HM=18+7=25(cm)
BM = MC(t/c đường trung tuyến)
=>BC=BM+MC=2BM=2*25=50(cm)
Xét tam AHC có
HC=HM+MC=7+25=32(cm)
theo định lí Pitago, ta có:
\(AC^2=AH^2+HC^2=24^2+32^2=1600\)
\(\Rightarrow AC=\sqrt{1600}=40\left(cm\right)\)
Xét tam ABC có
\(BC^2=50^2=2500\)(1)
\(AB^2+AC^2=30^2+40^2=900+1600=2500\left(2\right)\)Theo định lí Pitago đảo kết hợp (1)(2)
=>Tam ABC vuông tại A(dpcm)