K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

a) ĐKXĐ: \(x^2-2x+1\ge0\Rightarrow\left(x-1\right)^2\ge0\left(luônđúng\right)\)

\(Q=2x-\sqrt{x^2-2x+1}=2x-\sqrt{\left(x-1\right)^2}=2x-x+1=x+1\)

b) \(Q=x+1\\ \Rightarrow7=x+1\\ \Rightarrow x=6\)

a: Ta có: \(Q=2x-\sqrt{x^2-2x+1}\)

\(=2x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}2x-x+1=x+1\left(x\ge1\right)\\2x+x-1=3x-1\left(x< 1\right)\end{matrix}\right.\)

b: Ta có: Q=7

nên \(\left[{}\begin{matrix}x+1=7\left(x\ge1\right)\\3x-1=7\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{8}{3}\left(loại\right)\end{matrix}\right.\)

27 tháng 8 2021

a) \(Q^2=2x-\sqrt{\left(x^2+2x+1\right)}\)

\(Q^2=2x-\sqrt{\left(x+1\right)^2}\)

\(Q^2=2x-x-1\)

\(Q^2=x-1\)

\(Q=\sqrt{x-1}\)

b) Để Q=9 thì \(\sqrt{x-1}=9\)  => \(x=82\)

27 tháng 8 2021

Mình lộn câu b) Để Q=7 =>\(\sqrt{x-1}\)=7 => x=50

6 tháng 7 2016

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

6 tháng 7 2016

cảm ơn nhiều

8 tháng 10 2017

1.

a. ĐKXĐ : x lớn hơn hoặc bằng 1/2 

b. A\(\sqrt{2}\)\(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)

\(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)

=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)

Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)

\(\Rightarrow A=2\)

Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)

Do đó : A= \(\sqrt{4x-2}\)

Vậy ............

8 tháng 10 2017

2. 

a. \(x\ge2\)hoặc x<0

b. A= \(2\sqrt{x^2-2x}\)

c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)

\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)

Vậy...........

24 tháng 7 2015

ĐKXĐ:

\(2x-4\ge0\text{ và }x+2\sqrt{2x-4}\ge0\)

<=>\(2x\ge4\text{ và }x\ge2\sqrt{2x-4}\)

<=>\(x\ge2\text{ và }x^2\ge8x-16\)

<=>\(x\ge2\text{ và }\left(x-4\right)^2\ge0\)

<=>\(x\ge2\)

\(A=\sqrt{2}-\sqrt{x+2\sqrt{2x-4}}=\sqrt{2}-\sqrt{x+2\sqrt{2}\sqrt{x-2}}\)

\(=\sqrt{2}-\sqrt{2+2\sqrt{2}\sqrt{x-2}+x-2}=\sqrt{2}-\sqrt{\left(\sqrt{2}-\sqrt{x-2}\right)^2}\)

\(=\sqrt{2}-\left|\sqrt{2}-\sqrt{x-2}\right|\)

Với \(\sqrt{x-2}\ge\sqrt{2}\text{ thì }A=\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}-\sqrt{x-2}\)

Với \(\sqrt{x-2}\le\sqrt{2}\text{ thì }A=\sqrt{2}-\sqrt{2}+\sqrt{x-2}=\sqrt{x-2}\)

TH1: \(\sqrt{x-2}\ge\sqrt{2}\)

Để A=-1 thì

\(2\sqrt{2}-\sqrt{x-2}=-1\)

<=>\(\sqrt{x-2}=2\sqrt{2}-1\)

<=>\(x-2=9-4\sqrt{2}\)

<=>\(x=11-4\sqrt{2}\)(TM)

TH2: \(\sqrt{x-2}\le\sqrt{2}\)

Để A=-1 thì :

\(\sqrt{x-2}=-1\)(Vô lí)

Vậy \(x=11-4\sqrt{2}\)

1 tháng 8 2015

a) Tự làm. KQ: \(A=2\sqrt{x^2-2x}\). ĐK: \(x