Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7,\\ a,A=x^2-4x+3+11=\left(x-2\right)^2+10\ge10\\ \text{Dấu }"="\Leftrightarrow x=2\\ b,B=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\\ \text{Dấu }"="\Leftrightarrow x=\dfrac{1}{2}\\ c,x-y=2\Leftrightarrow x=y+2\\ \Leftrightarrow B=y^2-3x^2=y^2-3\left(y+2\right)^2\\ \Leftrightarrow B=y^2-3y^2-12y-12=-4y^2-12y-12\\ \Leftrightarrow B=-\left(4y^2+12y+9\right)-3=-\left(2y+3\right)^2-3\le-3\\ \text{Dấu }"="\Leftrightarrow y=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(8,\\ \Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow8-12+10+a=0\Leftrightarrow a=-6\)
Bài 7:
a.
$A=(x-1)(x-3)+11=x^2-4x+3+11=x^2-4x+14$
$=(x^2-4x+4)+10=(x-2)^2+10\geq 10$
Vậy gtnn của $A$ là $10$ khi $x=2$
b.
$B=5-4x^2+4x=6-(4x^2-4x+1)=6-(2x-1)^2\leq 6$
Vậy gtln của $B$ là $6$ khi $2x-1=0\Leftrightarrow x=\frac{1}{2}$
c.
$x-y=2\Rightarrow x=y+2$. Khi đó:
$B=y^2-3x^2=y^2-3(y+2)^2=y^2-(3y^2+12y+12)=-2y^2-12y-12$
$=6-2(y^2+6y+9)=6-2(y+3)^2\leq 6$
Vậy $B_{\max}=6$
Bài 8:
Đặt $f(x)=x^3-3x^2+5x+a$
Theo định lý Bê-du, để $f(x)\vdots x-2$ thì $f(2)=0$
$\Leftrightarrow 6+a=0$
$\Leftrightarrow a=-6$
\(x^2+5y^2-4xy-6y+9=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
\(\Rightarrow A=...\)
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
nhấn vô link nha bn
https://olm.vn/hoi-dap/detail/228510468302.html
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
Thay \(x-y=7\)vào biểu thức ta được:
\(A=7^2+2.7+37=49+14+37=100\)
b) Ta có: \(x+y=3\)\(\Rightarrow\left(x+y\right)^2=9\)\(\Rightarrow x^2+y^2+2xy=9\)
mà \(x^2+y^2=5\)\(\Rightarrow5+2xy=9\)
\(\Rightarrow2xy=4\)\(\Rightarrow xy=2\)
Vậy \(xy=2\)
a) A = x( x + 2 ) + y( y - 2 ) - 2xy + 37
= x2 + 2x + y2 - 2y - 2xy + 37
= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 37
= ( x - y )2 + 2( x - y ) + 37
Thế x - y = 7 vào A ta được :
A = 72 + 2.7 + 37 = 49 + 14 + 37 = 100
Vậy A = 100 khi x - y = 7
b) x + y = 3 => ( x + y )2 = 9
=> x2 + 2xy + y2 = 9
=> 5 + 2xy = 9 ( sử dụng gt x2 + y2 = 5 )
=> 2xy = 4
=> xy = 2