Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
bài 1:vì:số dư 2 trừ số dư 2 = số dư 0,0 ko có giá trị
bài 2:vì:số dư 1 cộng số dư 3 cộng số dư 5 = số dư 9,9 chia hết cho 9
bài 3:có lẽ là lỗi đề chứ mình chịu
bài 4:vì:số dư 4 trừ số dư 3 -số dư 1= số dư 0,0ko có giá trị
học tốt bạn nhé
Lời giải:
$a$ chia 3 dư 1 nên $a$ có dạng $a=3k+1$ với $k\in\mathbb{N}$
$b$ chia $3$ dư 2 nên $b$ có dạng $b=3m+1$ với $m\in\mathbb{N}$
$\Rightarrow a+b=3k+1+3m+2=3k+3m+3=3(k+m+1)\vdots 3$
1) Gọi 2 số lẻ là 2n + 1 và 2k + 3 (n và k là các số tự nhiên bất kì)
ta có tổng 2 số lẻ là:
2n + 1 + 2k + 3 = 2n + 2k + 4
= 2(n+k+2) chia hết cho 2 nên là số chẵn.
2) Gọi 2 số chẵn là 2x và 2k ( x và k là số tự nhiên bất kì)
Tích của chúng là:
\(2x\times2k=4xk\) chia hết cho 4.
Tương tự với 3 số tự nhiên chẵn chia hết cho 8
a)Đặt: A= 3k+1
B= 3k+2
Ta có:
A.B=( 3k+1). (3k+2)
= 3k. (3k+2)+ 3k+2
Vì 3k( 3k+2) +3k sẽ chia hết cho 3. Mà 2 chia 3 dư 2 nên khi cộng với nhau sẽ ra kết quả chia 3 dư 2.
Vậy A.B chia 3 dư 2.
Câu b đúng đề bài chưa? 4 STN hay 4 STN liên tiếp?