Bài 4: (3,5 điểm)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2015

 268 bài tập bồi dưỡng học sinh giỏi Toán lớp 9So sánh các số thực sau (không dùng máy tính):

11 tháng 9 2021

Bài 4 : 

a, Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức : \(AB^2=BH.BC=16\Rightarrow AB=4\)cm 

Theo định lí Ptago : \(AC=\sqrt{BC^2-AB^2}=\sqrt{64-16}=4\sqrt{3}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{16\sqrt{3}}{8}=2\sqrt{3}\)cm 

b, Xét tam giác ABK vuông tại A, đường cao AD 

\(AB^2=BD.BK\)( hệ thức lượng ) (1) 

Xét tam giác ABC vuông tại A, đường cao AH

\(AB^2=BH.BC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) => \(BD.BK=BH.BC\)(3) 

c, Xét tam giác BHD và tam giác BKC 

^B _ chung 

(3) => \(BD.BK=BH.BC\Rightarrow\frac{BD}{BC}=\frac{BH}{BK}\)

Vậy tam giác BHD ~ tam giác BKC ( c.g.c )

=> \(\frac{S_{BHD}}{S_{BKC}}=\left(\frac{BD}{BC}\right)^2\)(4) 

Ta có : cosABD = \(\frac{DB}{AB}\)

=> cos2ABD = \(\left(\frac{DB}{AB}\right)^2\)=> cos2ABD = \(\frac{DB^2}{AB^2}=\frac{DB^2}{16}\)

=> \(\frac{1}{4}cos^2\widehat{ABD}=\frac{DB^2}{64}=\frac{DB^2}{8^2}=\frac{DB^2}{BC^2}=\left(\frac{DB}{BC}\right)^2\)

\(\Rightarrow\frac{1}{4}cos^2\widehat{ABD}=\frac{S_{BHD}}{S_{BKC}}\)theo (4) 

=> \(S_{BHD}=S_{BKC}.\frac{1}{4}cos^2\widehat{ABD}\)

11 tháng 9 2021

Bài 3 : 

a, Với \(x>0;x\ne1\)

\(A=\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right):\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b, Ta có : \(A=\frac{5}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{3}\Rightarrow3\sqrt{x}+6=5\sqrt{x}\Leftrightarrow6=2\sqrt{x}\Leftrightarrow x=9\)

30 tháng 9 2020

:v Làm bài 31 thôi nhá , còn lại all tự làm -..-

Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).

Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)

+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)

Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)

Diện tích tăng thêm 36 cm2 nên ta có p/trình :

\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)

\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)

\(\Leftrightarrow xy+3x+3y+9=xy+72\)

\(\Leftrightarrow3x+3y=63\)

\(\Leftrightarrow x+y=21\)

+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).

Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)

Diện tích giảm đi 26cm2 nên ta có phương trình :

\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)

\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)

\(\Leftrightarrow xy-4x-2y+8=xy-52\)

\(\Leftrightarrow4x+2y=60\)

\(\Leftrightarrow2x+y=30\)

Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)

Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :

\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)

Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm

25 tháng 2 2018

nhiều bài thế hả trời

10 tháng 9 2021

a)\(\sqrt{81}-\sqrt{80}\)\(.\sqrt{0,2}\)\(=\sqrt{9^2}-\sqrt{80.0,2}\)\(=9-\sqrt{16}\)\(=9-4=5\)

    \(\sqrt{\left(2-\sqrt{5}\right)^2}\)\(-\frac{1}{2}.\sqrt{20}\)\(=|2-\sqrt{5}|-\frac{1}{2}.\sqrt{4.5}\)\(=2-\sqrt{5}-\frac{1}{2}.2\sqrt{5}\)

   \(=2-\sqrt{5}-\sqrt{5}=2\)

Tôi lm đc đến đây thôi(@_@)

   \(\)

10 tháng 9 2021

ko biết

15 tháng 12 2020

1 2 60 o D K B O H E E

a) Tam giác ABC đều => \(\widehat{B}=\widehat{C}=60^o\)

+) BDO có : \(\widehat{B}+\widehat{D_1}+\widehat{BOD}=180^o\)

\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}-\widehat{BOD}\)

            \(=180^o-60^o-\widehat{BOD}\)

            \(=120^o-\widehat{BOD}\left(1\right)\)

Ta lại có :

\(\widehat{BOD}+\widehat{DOE}+\widehat{EOC}=\widehat{BOC}=180^o\)

\(\Rightarrow\widehat{EOC}=180^o-\widehat{DOE}-\widehat{BOD}\)

                 \(=180^o-60^o-\widehat{BOD}\)

                 \(=120^o-\widehat{BOD}\)

Từ (1) và (2) , ta có : \(\widehat{D_1}=\widehat{EOC}\)

Tam giác BOD và CEO có :

\(\widehat{B}=\widehat{C}=60^o\)

\(\widehat{D_1}=\widehat{EOC}\left(cmt\right)\)

\(\Rightarrow\Delta BOD~\Delta CEO\)

\(\Rightarrow\frac{BO}{CE}=\frac{BD}{CO}\)

\(\Rightarrow BD.CE=BO.CO=\frac{BC^2}{4}\)( không đổi )

b) \(\Delta BOD~\Delta CEO\)

\(\Rightarrow\frac{OD}{EO}=\frac{BD}{CO}\)

mà \(CO=BO\Rightarrow\frac{OD}{EO}=\frac{BD}{BO}\)

Tam giác BOD và OED có :

\(\widehat{B}=\widehat{O}\left(=60^o\right)\)

\(\frac{BD}{BO}=\frac{OD}{OE}\)

\(\Rightarrow\Delta BOD~\Delta OED\)

\(\Rightarrow\widehat{BDO}=\widehat{ODE}\)

=> OD là tia phân giác của góc BDE

c) 

Gọi đường tròn tâm O tiếp xúc với AB có bán kính R

Gọi H, K là chân đường vuông góc hạ từ O đến DE và AB

=> R = OK

O thuộc đường phân giác của góc BDE

=> OH = OK.

=> OH = R

=> DE tiếp xúc với (O; R) ( đpcm )

Kỳ thi tuyển sinh vào lớp 10Đề thi môn: ToánNăm học 2021 - 2022Thời gian: 120 phút Phần II. Tự luậnBài 1: (2 điểm)1) Thu gọn biểu thức2) giải phương trình và hệ phương trình sau:a) 3x2 + 5x - 8 = 0b) (x2 + 5)2 = 3(x2 + 5) + 4Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :y = 2mx – 2m + 1a) Với m = -1 , hãy vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa...
Đọc tiếp

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

 

Phần II. Tự luận

Bài 1: (2 điểm)

1) Thu gọn biểu thức

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2) giải phương trình và hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) Với m = -1 , hãy vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ

b) Tìm m để (d) và (P) cắt nhau tại 2 điểm phân biệt : A (x1; y1 );B(x2; y2) sao cho tổng các tung độ của hai giao điểm bằng 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Tìm x để A < 0

Bài 4: (3,5 điểm) Cho đường tròn (O) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn (O) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD, (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau tại P.

a) Chứng minh rằng :Tứ giác IKEN nội tiếp

b) Chứng minh: EI.MN = NK.ME

c) NK cắt MP tại Q. Chứng minh: IK là phân giác của góc EIQ

d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định.

Giúp mk với thề mk sẽ k đầy đủ

6
6 tháng 11 2021

mình mới lớp 6 nên kc bt xin lỗi à

6 tháng 11 2021

Bài 2:

a) Với m ≠ 0, phương trình trên là phương trình bậc hai ẩn x

Δ' = (m + 1)2 - m(m - 4) = m2 + 2m + 1 - m2 + 4m = 6m + 1

Phương trình có 2 nghiệm x1; x2 khi và chỉ khi Δ' = 6m + 1 ≥ 0

Khi đó, theo định lí Vi-et ta có:

Theo bài ra:

x1 + 4x2 = 3

<=> (x1 + x2 ) + 3x2 = 3

 + 3x2 = 3

=> 5m2 - 2m - 16 = 9m2 - 36m

<=> 4m2 - 34m + 16 = 0

undefined

Đối chiếu với điều kiện thỏa mãn

Vậy m = 8, m =  thì x1 + 4x2 = 3

b) Ta có:

2(x1 + x2 ) + x1x2 =  = 5

Vậy hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m là 2(x1 + x2 ) + x1x2 = 5

Bài 3:

Gọi số học sinh lớp 9A là x ( học sinh) (x > 8, x ∈ N)

Khi đó, số cây mỗi học sinh phải trồng là:

 (cây học sinh )

Do có 8 bạn học sinh vắng mặt nên số cây mỗi bạn phải trồng là

 (cây học sinh )

Theo bài ra, mỗi bạn phải trồng thêm 3 cây nên ta có phương trình

=> 480(x - 8) + 3x(x - 8) = 480x

<=> 3x2 - 24x - 3840 = 0

Vậy số học sinh lớp 9A là 40 học sinh

Bài 4:

a) Xét tứ giác AMHN có:

∠AMH = 90o (MH ⊥ AB)

∠ANH = 90o (NH ⊥ AC)

=> ∠AMH + ∠ANH = 180o

=> Tứ giác AMHN là tứ giác nội tiếp

b) Ta có:

ΔAMH vuông tại M: ∠AHM + ∠MAH = 90o

ΔABH vuông tại H: ∠ABC + ∠MAH = 90o

=> ∠AHM = ∠ABC

Do tứ giác AMHN là tứ giác nội tiếp nên ∠AHM = ∠ANM (2 góc nội tiếp cùng chắn cung AM)

=> ∠ABC = ∠ANM

c) Kẻ đường kính AD của (O), Gọi I là giao điểm của AD và MN

ΔANH vuông tại N: ∠AHN + ∠NAH = 90o

ΔACH vuông tại H: ∠AHN + ∠ACB = 90o

=> ∠NAH = ∠ACB

Ta lại có: ∠ACB = ∠ADB (2 góc nội tiếp cùng chắn cung AB)

=> ∠NAH = ∠ADB

Mặt khác: tứ giác AMHN là tứ giác nội tiếp nên ∠AMN = ∠AHN (2 góc nội tiếp cùng chắn cung AN)

=> ∠AMN = ∠ADB

Xét ΔAMI và ΔABD có:

∠BAD là góc chung

∠AMN = ∠ADB

=> ΔAMI ∼ ΔADB

=> ∠ AIM = ∠ABD

Mà ∠ABD = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠AIM = 90o

Hay OA ⊥ MN

d) Xét tam giác AIN và tam giác ACD có:

∠DAC là góc chung

∠AIN = ∠ACD = 90o

=> ΔAIN ∼ ΔACD

=><=> AI.AD = AC.AN (1)

Xét ΔAHC vuông tại H có HN là đường cao

=> AC. AN = AH2 (2)

Từ (1) và (2) => AI.AD = AH2 <=> AI.AD = 2R2

<=> AI.2R = 2R2 <=> AI = R <=> I ≡ O

Vậy M, N, O thẳng hàng.

Bài 5:

Do a, b > 0 nên ta có:

Dấu bằng xảy ra khi:

undefined

Vậy GTLN của P là 2√2, đạt được khi a = b = 1.

Câu 2:Cho tam giác ABC vuông ở A có  Với điểm M thuộc BC, ta vẽ MD và ME lần lượt song song với AC và AB. Khi DE có độ dài ngắn nhất thì = . Câu 3:Cho tam giác ABC vuông cân tại A, AC= 4cm. Điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng  cm. Câu 4:Một hình chữ nhật có chu vi là 70 cm và diện tích là . Độ dài đường...
Đọc tiếp
Câu 2:
Cho tam giác ABC vuông ở A có ?$AC%3EAB.$ Với điểm M thuộc BC, ta vẽ MD và ME lần lượt song song với AC và AB. Khi DE có độ dài ngắn nhất thì ?$\widehat{AMB}$?$^o$.
 
Câu 3:
Cho tam giác ABC vuông cân tại A, AC= 4cm. Điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng  cm.
 
Câu 4:
Một hình chữ nhật có chu vi là 70 cm và diện tích là ?$300%20cm^2$. Độ dài đường chéo của hình chữ nhật đó bằng cm.
 
Câu 5:
Số trục đối xứng của một hình chữ nhật là 
 
Câu 6:
Nếu đa thức ?$3x^3+2x^2-7x+a$ chia hết cho đa thức ?$3x-1$ thì ?$a=$
 
Câu 7:
Tập hợp các giá trị của ?$x$ thỏa mãn đẳng thức ?$(x^4-2x^2-8):(x-2)=0$ bao gồm  phần tử
 
Câu 8:
Biểu thức ?$B=x^6+x^4+x^2+2^{2015}$ đạt giá trị nhỏ nhất khi ?$x=$
 
Câu 9:
Cho tam giác ABC nhọn, các đường cao AH, BK, CL cắt nhau tại I gọi D, E, F là trung điểm của BC, CA, AB và P, Q, R là trung điểm của IA, IB, IC thì số hình chữ nhật có trên hình vẽ là 
Hãy điền số thích hợp vào chỗ .... nhé !
 
Câu 10:
Tìm số nguyên dương ?$n$ sao cho giá trị của biểu thức ?$10n^2+n-10$ chia hết cho giá trị của biểu thức ?$n-1$.
Trả lời: ?$n=$ .
1
6 tháng 1 2016

bạn làm thế nào mà làm được như vậy bạn, ý mình là sao bạn có thể tạo câu hỏi như trên đấy

13 tháng 1 2018

Cho ∆ABC vuông tại A, có .......mình ghi thiếu