Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Áp dụng định lý Pi-ta-go vào tamgiac vuông ABC có:
AB2 = BC2 - AC2
Thay: AB2 = 102 - 62 = 100 - 36 = 64
Nên AB = 8 ( cm )
Ta có: CM là đường trung tuyến
=> AM = BM
Mà AM + BM = AB
=> 2.BM = 8 <=> BM = 4 (cm)
Vậy BM = 4 (cm)
b) Xét 2 tam giác AMC và BMD, có:
AM = BM (vì CM là trung tuyến)
CM = DM (gt)
góc AMC = góc BMD (đ.đ)
=> tamgiac AMC = tamgiac BMD ( c.g.c)
Nên AC = BD (2 cạnh tương ứng)
c) Ta có: CD = CM + DM
Mà CM = DM ( gt )
=> CD = 2.CM
Trong tamgiac BDC có:
BC + BD > CD ( bất đẳng thức tamgiac)
Hay BC + BD > 2.CM (cmt)
Mà BD = AC
=> BC + AC > 2.CM ( đpcm)
d) Thêm đề: Gọi K là điểm nằm trên đoạn thẳng AM sao cho AK = \(\dfrac{2}{3}\) AM
Vì AK = \(\dfrac{2}{3}\) AM
=> K là trọng tâm
Hay CM đi qua K là đường trung tuyến
=> AN = DN
Mà N \(\in\) AD
=> BN là đường trung tuyến (1)
Mặt khác: BM = AM => DM là đường trung tuyến (2)
Ngoài ra I là giao điểm BN và DM (3)
Từ (1) (2) (3)
=> I là trọng tâm tamgiac DAB
=> \(ID=\dfrac{2}{3}DM\)
Hay: \(DM=\dfrac{3}{2}ID\)
Mà: CD = 2.DM
=> \(CD=2.\dfrac{3}{2}ID=3.ID\)(đpcm)
B A C M K I N D ( hình ảnh chỉ mang t/c minh họa ^^)
a. Áp dụng định lí pytago vào \(\Delta\)ABC (\(\widehat{A}\)=90o) có:
AB=\(\sqrt{BC^2-AC^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\) (cm)
Vì MA=MB (CM là đường trung tuyến của tam giác ABC) nên:
MB=\(\dfrac{AB}{2}=\dfrac{8}{2}\) =4 (cm)
Vậy AB=8cm và MB=4cm
b. Xét \(\Delta\)MAC và \(\Delta\)MBD có:
MA=MB (CM là đường trung tuyến của tam giác ABC)
\(\widehat{AMC}=\widehat{BMD}\) (Đối đỉnh)
MC=MD (GT)
\(\Rightarrow\Delta\)\(MAC=\Delta\)MBD (c.g.c)
=> AC=BD
a/ Xét tg ABM và tg ACM có
AB = AC ( gt)
BM = CM ( gt)
AM chung
=> tg ABM = tg ACM (ccc)
b/ ( Trên tia đối của tia MA chứ ko phải AM nha )
Xét tg AMC và tg DMB, có
MC = MB (gt)
AM = MD ( gt)
^AMC = ^BMD ( đđ )
=> tg AMC = tg DMB ( cgc)
=> AC = BD
c/ tg ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AD vuông góc BC (1)
Lại có AM = MD , BM = MC ( gt) (2)
Từ (1), (2) => ABCD là hình thoi
=> AB // CD
d/ Theo đề : AI // BC , AI = BC
=> ABCI là hình bình hành
=> AB // CI
Mà AB // BC ( cmt )
=> I , C ,D thẳng hàng
A C B M D '
Áp dụng đinh lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AB^2\)
\(\Leftrightarrow100-36=AB^2\Leftrightarrow64=AB^2\Leftrightarrow AB=8\)cm
Vì CM là đường trung tuyến
=> AM = BM
Nên : \(2BM=AB\Leftrightarrow2BM=8\Leftrightarrow BM=4\)cm
b, Xét \(\Delta AMC\)và \(\Delta BMD\)ta có :
AM = BM (cmt)
CM = DM (gt)
^AMC = ^BMD (đ.đ)
=>\(\Delta\) AMC = \(\Delta\)BMD ( c.g.c)
P/S: Dạo này đọc hình chán quá )):
a, Theo câu b ta có : \(\hept{\begin{cases}AC=BD\\CM=DM\end{cases}}\)
Từ đó bđt trên tương đương với
\(BD+BC>CM+DC=CD\)
Hoàn toàn đúng theo bđt tam giác ( đpcm )
A B C M D 1 2
a, Vì \(\Delta ABC\) vuông tại A nên theo định lí Py-ta-go, ta có: \(BC^2=AC^2+AB^2\Rightarrow AB^2=BC^2-AC^2=10^2-6^2=100-36\)
\(=64\Rightarrow AB=\sqrt{64}=8cm\left(AB>0\right)\)
Do CM là trung truyến => M là trung điểm AB => AM=BM=\(\dfrac{1}{2}AB=\dfrac{1}{2}.8=4cm\)
Vậy AB=8cm; BM=4cm
c, Ta dễ chứng minh \(\Delta MAC=\Delta MDB\left(c-g-c\right)\Rightarrow AC=DB\)
Vậy \(\Delta MAC=\Delta MBD;AC=BD\)
d, Trong \(\Delta BCD\) có: BD+BC>DC (bất đẳng thức tam giác) hay BD+BC>2CM (do M thuộc CD, CM=DM) (1)
Mà BD=AC (2)
Từ (1) và (2) => AC+BC>2CM
Vậy AC+BC>2CM
A D C B M 10cm 6cm
a )
Áp dụng định lý py - ta - go ta có :
\(AB^2=BC^2-AC^2\)
\(AB^2=10^2-6^2\)
\(AB^2=64\)
\(\Rightarrow AB=8cm\)
Vì \(CM\) là đường trung tuyến
\(\Rightarrow MB=MA=4cm\)
c )
Xét \(\Delta MAC\) và \(\Delta MBD\) có :
\(MA=MB\) ( câu a )
\(MC=MD\) ( 2 tia đối )
\(AMC=BMD\) ( đđ )
\(\Rightarrow\Delta MAC=\Delta MBD\left(c-g-c\right)\)
\(\Rightarrow MC=MD\) ( 2 cạnh tương ứng )
d )
Áp dụng BĐT tam giác ta có :
\(BC+BD>CD\)
\(\Rightarrow BC+AC>2CM\)