K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng vói ΔBHA

b: ΔABC vuông tại A có AH vuông góc BC

nên AB*AC=AH*BC

c: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

AH=6*8/10=4,8cm

CH=8^2/10=6,4cm

30 tháng 7 2018

a, \(\Delta ABC\)và \(\Delta HBA\)có:

\(\widehat{ABC}=\widehat{AHB}=90^o\)

\(\widehat{BAC}\) chung

\(\Rightarrow \Delta ABC \sim \Delta HBA\) (g-g) 

b, Ta có: \(\Delta ABC \sim \Delta HBA\) (g-g) \(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)\(\Rightarrow AB.AC=AH.BC\)

c, \(\Delta ABC\)có: \(\widehat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

hay \(10^2=6^2+AC^2\)

       \(AC^2=64\)

       \(AC=8\left(cm\right)\)

Ta có: \(\frac{AC}{AH}=\frac{BC}{AB}\left(cmt\right)\Leftrightarrow\frac{8}{AH}=\frac{10}{6}\Leftrightarrow AH=4,8\left(cm\right)\)

\(\Delta AHC\)có: \(\widehat{AHC}=90^o\)

\(\Rightarrow AC^2=AH^2+HC^2\)(định lý Py-ta-go)

hay \(8^2=4,8^2+HC^2\)

       \(HC^2=40,96\)

       \(HC=6,4\left(cm\right)\)

13 tháng 4 2016

xét tam giác KHI có HD là phân giác trong, ta được : DI/DK=IH/KH (1)                  

Cũng tam giác KHI có HE là phân giác ngoài do đó: EI/EK=IH/HK(2)                            

1 và 2 suy ra DI/DK=EI/EK                                

suy ra điều phải chứng minh thôi bạn 

23 tháng 3 2023

.

 

23 tháng 3 2023

a,
xét tam giác BAC và tam giác BHA có
góc B chung
góc BAC=góc BHA (=90 độ)
=>tam giác BAC đông dạng với tam giác BHA
ta có \(\dfrac{AB}{BH}=\dfrac{BC}{BA}\)=>\(AB^2=BH.BC\)
b,
Xét Tam giác ABC 
=>\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\)=>AB.AC=AH.BC
c,
áp dụng định lý py-ta-go vào tam giác ABC vuông tại A
\(AC^2=BC^2-BA^2\)
=>AC=8
Xét tam giác ABC 
\(\dfrac{AC}{CH}=\dfrac{AB}{BH}=>\dfrac{8}{CH}=\dfrac{6}{10-CH}\)
=>8(10-CH)=6CH
=>80-8CH=6CH
=>CH sấp sỉ 5cm
áp dụng định lý py-ta-go vào tam giác HBA vuuong tại H
\(AH^2=AB^2-BH^2\)
=>AH=3,31662479

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc ABC chung

Do đo: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{AH\cdot BC}{2}\)

=>\(AB\cdot AC=AH\cdot BC\)

c: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

\(CH=\dfrac{AC^2}{BC}=6.4\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: BD là phân giác

=>BC/AB=DC/DA

Xét ΔHAC có DE//AH

nên EC/EH=DC/DA

=>BC/AB=EC/EH

=>AB/EH=BC/EC

c: AC=căn 20^2-12^2=16cm

DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2

=>DA=6cm; DC=10cm

S BAC=1/2*12*16=96cm2

S BAD=1/2*6*12=36cm2

=>S BDC=60cm2