K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

\(1,\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\) là đtb \(\Delta ABC\Rightarrow MN=\dfrac{1}{2}BC.hay.2MN=BC\)

\(2,\) Vì \(MN//BC\left(t/c.đtb\right)\Rightarrow MNCB\) là hình thang

Mà \(\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\)

\(\Rightarrow MNCB\) là hthang cân

\(3,\left\{{}\begin{matrix}\widehat{MNO}=\widehat{OCB}\\\widehat{NMO}=\widehat{OBC}\end{matrix}\right.\Rightarrow\Delta MNO\sim\Delta COB\left(g.g\right)\\ \Rightarrow\dfrac{MN}{BC}=\dfrac{MO}{OC}\Rightarrow\dfrac{2MI}{2CK}=\dfrac{MO}{OC}\Rightarrow\dfrac{MI}{CK}=\dfrac{MO}{OC}\)

Lại có \(\widehat{IMO}=\widehat{OCK}\left(so.le.trong\right)\)

\(\Rightarrow\Delta IMO\sim\Delta KCO\left(c.g.c\right)\)

Do đó \(\widehat{MOI}=\widehat{KOC}\Rightarrow I;O;K\) thẳng hàng \(\left(1\right)\)

Chứng minh tương tự, ta được \(\Delta MAI\sim\Delta BAK\Rightarrow\widehat{AHE}=\widehat{BHF}\Rightarrow A;I;K\) thẳng hàng \(\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow A;I;O;K\) thẳng hàng 

14 tháng 9 2021

1) Xét ΔABC cân tại A, có:

M là trung điểm của AB, N là trung điểm của AC

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC ⇒ BC = 2MN (ĐPCM)

2) Xét tứ giác MNCB, có:

MN // BC(MN là đường trung bình)

MB = NC (do AB = AC và M, N là trung điểm AB, AC)

⇒ MNCB là hình thang.

mà:

\(\widehat{MBC}=\widehat{NCB}\) (do ΔABC cân tại A)

⇒ MNCB là hình thang cân.

d. Xét ΔAMN, có:

\(\widehat{AMN}=\widehat{ANM}\) (đồng vị so với \(\widehat{ABC},\widehat{ACB}\))

⇒ ΔAMN cân tại A, mà AI ⊥ MN (do MN là cạnh đáy, I là trung điểm MN) ⇒ A,I thẳng hàng 

Chứng minh tương tự cho tam giác ABC với BC là cạnh đáy có K là trung điểm, ta được A, I, K thẳng hàng (1)

Có ΔMON cân, do \(\widehat{ONM}=\widehat{OMN}\) vì \(\widehat{BMN}=\widehat{CNM}\) ⇒ OI thẳng hàng do I là trung điểm cạnh đáy MN của tam giác cân. (2)

Từ (1) và (2) ⇒ A, I, O, K thẳng hàng.

26 tháng 12 2021

a: Xét ΔABC có

AM/AB=AN/AC

Do đó: MN//BC

hay BMNC là hình thang

mà BN=CM

nên BMNC là hình thang cân

26 tháng 12 2021

\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh

Do đó O là trung điểm AP và BD

Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm

Do đó \(DG=\dfrac{2}{3}DO\)

Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)

27 tháng 10 2021

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra:MN//BC

hay BMNC là hình thang

30 tháng 7 2023

a) Ta có:-

- M là trung điểm của AB

⇒  AM = MB.

- N là trung điểm của BC

⇒ BN = NC.

- P là trung điểm của CD

⇒ CP = PD.

- Q là trung điểm của DA

⇒ DQ = QA.

Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.

⇒ tứ giác MNPQ là hình bình hành.

Có:

- I là trung điểm của AC

⇒AI = IC.

- K là trung điểm của BD

⇒ BK = KD.

Do đó, ta có: AI = IC = BK = KD.

⇒ tứ giác INKQ là hình bình hành.

b)Gọi O là giao điểm của MP và NQ ta có:

MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).

⇒ MP song song với NQ.

do đó :O nằm trên MP và NQ.

  Gọi H là giao điểm của MI và NK ta có:

MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD). 

⇒ MI song song với NK.

  Do đó: H nằm trên cả MI và NK.

  Gọi G là giao điểm của OH và BD ta có:

OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên  MI và NK). 

⇒ OH song song với BD.

doo đó: G nằm trên OH và BD.

⇒ I, O, K thẳng hàng.(ĐPCM)

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ/AC=DQ/DA=1/2

=>PQ=1/2AC

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔCAB có CI/CA=CN/CB=1/2

nên IN//AB và IN=1/2AB

Xét ΔDAB có DQ/DA=DK/DB=1/2

nên QK//AB và QK=1/2AB

=>IN//QK và IN=QK

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm của NQ

INKQ là hbh

=>IK cắt NQ tại trung điểm của mỗi đường

=>I,O,K thẳng hàng

25 tháng 8 2018

a/ Ta có

AB=BC và MA=MB; NB=NC => MB=NC

Xét hai tg vuông BMC và tg vuông CNC có

MB=NC (cmt)

BC=CD (cạnh hình vuông)

=> tg BMC= tg CND => ^BMC=^CND (1)

Trong tg vuông BMC có ^BCM+^BMC=90 (2)

Từ (1) và (2) => ^BCM+^CND=90 => ^CHN=90 => MC vuông góc DN

b/

Ta có AB=CD (cạnh hình vuông) và MA=MB; KC=KD => MA=KC

Mà MA//KC

=> AMCK là hình bình hành => AK//MC (3)

Xét tg CDH có ID=IH và KD=KC (đề bài) => IK là đường trung bình => IK//MC (4)

Từ (3) và (4) => AK trùng với IK => A; I; K thẳng hàng

c/

Xét tg ADH có

AI//MC mà MC vuông góc với DN => AI vuông góc với DN => AI là đường cso của tg ADH (5)

Ta có ID=IH (đề bài) => AI là trung tuyến của tg ADH (6)

Từ (5) và (6) => tg ADH cân tại A (tam giác có đường cao đồng thời là đường trung tuyến ... là tam giác cân)