Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BHA và BHE có:
BD chung
\(\widehat{ABD}\)=\(\widehat{EBD}\)(vì BD là phân giác \(\widehat{B}\))
\(\widehat{BHA}\)=\(\widehat{BHE}\)(vì AH vuông góc với Bd tại H)
\(\Rightarrow\)Tam giác BHA=tam giac BHE(c.g.v-g.n.k)
b) Xét Tam giác BDA và tam giác BDE có
BD chung
BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))
ABD=EBD( vì BD là phân giác của\(\widehat{B}\))
\(\Rightarrow\)Tam giác BDA = Tam giác BDE(c.g.c)
\(\Rightarrow\)\(\widehat{BEA}\)=\(\widehat{A}\)= 90o(2 canh tương ứng và \(\widehat{A}\)= 90o)
ED vuông góc với B tại E
d, DA= DE do tam giác ABD = tam giác EBD (Câu b)
=> tam giác DAE cân tại D (đn)
=> ^DAE = ^DEA (tc) (1)
có : AK _|_ BC (gt) ; DE _|_ BC (câu b)
=> DE // AK
=> ^DEA = ^EAK (slt) và (1)
=> ^DAE = ^EAK mà AE nằm giữa AD và AK
=> AE là phân giác của ^CAK (đn)
c, AD = DE
DE < CD do tam giác CDE vuông tại E
=> AD < DC
a) Xét tam giác BHA và BHE có:
BD chung
ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)
ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)
⇒Tam giác BHA=tam giac BHE(c.g.v-g.n.k)
b) Xét Tam giác BDA và tam giác BDE có
BD chung
BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))
ABD=EBD( vì BD là phân giác củaˆBB^)
⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)
⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)
ED vuông góc với B tại E
c, AD = DE
DE < CD do tam giác CDE vuông tại E
=> AD < DC
d, DA= DE do tam giác ABD = tam giác EBD (Câu b)
=> tam giác DAE cân tại D (đn)
=> ^DAE = ^DEA (tc) (1)
có : AK _|_ BC (gt) ; DE _|_ BC (câu b)
=> DE // AK
=> ^DEA = ^EAK (slt) và (1)
=> ^DAE = ^EAK mà AE nằm giữa AD và AK
=> AE là phân giác của ^CAK (đpcm)
a) Vì EH ⊥ BC ( gt )
=> ΔBHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có :
BE chung
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )
b) Gọi I là giao điểm của AH và BE
Xét ΔABI và ΔHBI có :
BA = BH (ΔBAE = ΔBHE (cmt)
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
BI chung
=> ΔABI = ΔHBI ( c.g.c )
=> ∠AIB = ∠AIH ( 2 góc tương ứng )
Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )
=> ∠AIB = ∠AIH = 900
=> BI ⊥ AH (1)
Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )
Mà I nằm giữa hai điểm A và H (2)
=> I là trung điểm của AH ( 3)
Từ (1) (2) (3) => BI là trung trực của AH
Hay BE là trung trực của AH
c) Xét ΔKAE và ΔCHE có:
∠KAE = ∠CHE ( = 900 )
AE = HE ( ΔBAE = ΔBHE (cmt)
∠AEK = ∠HEC ( 2 góc đối đỉnh )
=> ΔKAE = ΔCHE ( g.c.g )
=> EK = EC ( 2 cạnh tương ứng )
b: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
góc ABH=góc EBH
=>ΔBHA=ΔBHE
c: ΔBHA=ΔBHE
=>BA=BE
Xét ΔBAK và ΔBEK có
BA=BK
góc ABK=góc EBK
BK chung
=>ΔBAK=ΔBEK
=>góc BEK=góc BAK=90 độ
=>EK vuông góc bC
d: AK=KE
KE<KC
=>AK<KC
a/
Xét tg BAE và tg BKE có
BE chung; BA=BK (gt)
\(\widehat{ABE}=\widehat{KBE}\left(gt\right)\)
=> tg BAE = tg BKE (c.g.c)
b/
Ta có tg BAE = tg BKE (cmt) => AE=KE và \(\widehat{BAE}=\widehat{BKE}=90^o\)
\(\Rightarrow EK\perp BC\)
c/
Xét tg vuông CKE có EC là cạnh huyền => KE<EC (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất)
Mà AE=KE (cmt)
=> AE<EC
d/ Gọi D là giao của BE với AK
Xét tg ABK có
BA=BK => tg ABK cân tại B
BD là phân giác \(\widehat{ABK}\)
=> BD là trung tuyến của tg ABK (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung tuyến)
Có AI là trung tuyến của tg ABK
=> G là trong tâm của tg ABK => BG=2.DG
Xét tg DKG có
\(DK=DA=\dfrac{AK}{2}\) (BD là trung tuyến)
Ta có
\(DG+DK>KG\) (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
\(\Rightarrow DG+\dfrac{AK}{2}>KG\) Mà \(BG=2.DG\Rightarrow BG>DG\Rightarrow BG+\dfrac{AK}{2}>KG\)
a: Xét ΔABK vuông tại A và ΔEBK vuông tại E có
BK chung
\(\widehat{ABK}=\widehat{EBK}\)
Do đó: ΔABK=ΔEBK
b: Ta có: ΔABK=ΔEBK
nên KA=KE
c: Ta có: KA=KE
AB=EB
Do đó: BK là đường trung trực của AE
a) Xét tam giác BAK và tam giác BEK:
Góc A=góc E
Góc B1=B2
BK - cạch chung
Vậy tam giác BAK= tam giác BEK (cạch huyền góc nhọn)
b)Theo CMa)vì tam giác BAK= tam giác BEK
Vậy KA=KE (2 cạnh tương ứng)
c)Xét tam giác AKM và tam giác EKC
Góc K1= góc k2
Vì 2 góc A1 và A2 là 2 góc kề bù mà A1=90độ => A2=90 độ (1)
Góc E1 và E2 là 2 góc kề bù mà E1=90độ =>E2 =90 độ (2)
Từ (1) và (2) ta có: góc A2= góc E2 (=90 độ)
Vậy tam giác AKM= tam giác EKC (cạnh huyền góc vuông)
=> MK=KC (2 cạnh tương ứng
a: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
góc ABH=góc EBH
=>ΔBHA=ΔBHE
b: Xét ΔBAK và ΔBEK có
BA=BE
góc ABK=góc EBK
BK chung
=>ΔBAK=ΔBEK
=>góc BEK=90 độ
=>EK vuông góc BC
c: AK=KE
KE<KC
=>AK<KC