Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 ( của toán lớp 10 mà )
Ta có : ( P ) đi qua điểm A nên thay x = 4 ; y = 5 vào ( P ) , ta được :
5 = a . 42 + b . 4 + c
5 = 16a + 4b + c
-c = 16a + 4b - 5
=> c = -16a - 4b + 5 ( * )
( P ) có đỉnh là I(2;1)
=> \(\hept{\begin{cases}-\frac{b}{2a}=2\\-\frac{\Delta}{4a}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-b=4a\\-\frac{\left(b^2-4ac\right)}{4a}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4ac=-4a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4a.\left(-16a-4b+5\right)=-4a\end{cases}}\) ( c = - 16a -4b + 5 ) mình chứng minh ở trên nhé
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\left(-4a\right)^2-4a.\left(-16a-4\left(-4a\right)+5\right)=-4a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2+48a^2-48a^2-20a+4a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2-16a=0\end{cases}}\) ( ở bước này bạn có thể tính bằng tay hoặc dùng máy tính nha : more 5 - 3 )
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\a=1\left(nhan\right);a=0\left(loai\right)\end{cases}}\) ( a = 0 thì loại ; vì trong phương trình bậc 2 thì a phải khác 0 )
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4.\left(1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4\end{cases}}\)
Thay a = 1 và b = -4 vào phương trình ( * ) ta được :
c = -16 . 1 - 4 .( -4 ) +5 = 5
vậy ( P ) là \(y=x^2-4x+5\)
bảng biến thiên :
bạn tự vẽ (P) nha , quá dễ mà
BÀI 2 : \(\forall x\in R\) có nghĩa là vô số nghiệm
\(\left(m^2-1\right)x+2m=5x-2v6\)
\(\Leftrightarrow\left(m^2-1\right)x-5x=2v6-2m\)
\(\Leftrightarrow\left(m^2-1-5\right)x=2v6-2m\)
\(\Leftrightarrow\left(m^2-6\right)x=2v6-2m\)
Phương trình có nghiệm \(\forall x\in R\) \(\Leftrightarrow0x=0\)
\(\Leftrightarrow\hept{\begin{cases}m^2-6=0\\2v6-2m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm v6\\m=v6\end{cases}}\)
Vậy m = v6 thì phương trình có nghiệm đúng \(\forall x\in R\) ( bởi vì m = v6 và m =+-v6 nên ta chỉ lấy phần chung thôi ,lấy v6 ,loại bỏ -v6)
Bài 3 :
a )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(2m-3\right)\right]^2-4.\left(2m-1\right).\left(2m+5\right)\)
\(=4.\left(4m^2-12m+9\right)-\left(8m-4\right)\left(2m+5\right)\)
\(=16m^2-12m+36-\left(16m^2+40m-8m-20\right)\)
\(=16m^2-12m+36-16m^2-40m+8m+20\)
\(=-44m+56\)
phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow-44m+56\ge0\)
\(\Leftrightarrow-44m\ge-56\)
\(\Leftrightarrow m\le\frac{14}{11}\)
Vậy \(m\le\frac{14}{11}\) thì phương trình có nghiệm ( m bé hơn hoặc bằng 14/11 nha )
b ) x1 = x2 có nghĩa là nghiệm kép nha ( có 2 nghiệm phân biệt x1,x2 ; đề bài đang đánh lừa bạn đấy )
phương trình có 2 nghiệm x1 = x2 \(\Leftrightarrow\Delta=0\)
\(\Leftrightarrow-44m+56=0\)
\(\Leftrightarrow m==\frac{14}{11}\)
Học tốt !!!!!
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)
1)Nếu x-1 >= 0 thì x>=1
=>x2 – 3x + 2 + |x – 1| = 0
<=>x2-3x+2+x-1=0
<=>x2-2x+1=0
<=>(x-1)2=0
<=>x-1=0
<=>x=1
Vậy S={1}
2 ) ĐKXĐ:
x(x-2)≠0
<=>x≠0 và x-2≠0
<=>x≠0 và x≠2
\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}-\frac{2}{x\left(x-2\right)}=0\)
=>x(x+2)-(x-2)-2=0
<=>x2+2x-x+2-2=0
<=>x2+x=0
<=>x(x+1)=0
<=>x=0 (ko thỏa ĐKXĐ) hoặc x+1=0
<=>x=-1
Vậy S={-1}
a)Thay m=-2 vào phương trình (1) ta được:
\(x^2+2x-2-1=0\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
Vậy....
b)Ta có:
\(\Delta=\left(-m\right)^2-4.1.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Có:\(\left(m-2\right)^2\ge0\forall m\)
\(\Rightarrow\Delta\ge0\forall m\)
Vậy Phương trình (1) luôn có nghiệm \(x_1,x_2\)với mọi giá trị của m
\(5x^2+24x+19=0\)
\(\Leftrightarrow5x^2+5x+19x+19=0\)
\(\Leftrightarrow5x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x+19\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\5x+19=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{19}{5}\end{cases}}\)
Vậy \(S=\left\{-1;-\frac{19}{5}\right\}\)
Tìm nghiệm của phương trình
5x^2 + 24x + 19 = 0
5x^2 + 5x + 19x + 19 = 0
5x(x+1 ) ( 5x + 19 ) = 0
x + 1 = 0
5x + 19 = 0
x = -1
x = -19/5
vậy S = { -1 ; -19/5 }
Áp dụng BDT Bunhiacopki, ta có
\(1^2\le\left(x+3y\right)^2\le\left(1^2+3^2\right)\left(X^2+Y^2\right)\)
\(\Rightarrow\)\(X^2+Y^2\)\(\ge\frac{1}{10}\).Dấu bằng xảy ra
\(\Leftrightarrow x=3y\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{10}\\y=\frac{1}{10}\end{cases}}\)
1: Δ=(2m-2)^2-4(2m-5)
=4m^2-8m+4-8m+20
=4m^2-16m+24
=4m^2-16m+16+8
=(2m-4)^2+8>=8>0 với mọi m
=>PT luôn có 2 nghiệm pb
2: Để pt có hai nghiệm trái dấu thì 2m-5<0
=>m<5/2
3: A=(x1+x2)^2-2x1x2
=(2m-2)^2-2(2m-5)
=4m^2-8m+4-4m+10
=4m^2-12m+14
=4(m^2-3m+7/2)
=4(m^2-2m*3/2+9/4+5/4)
=4(m-3/2)^2+5>=5
Dấu = xảy ra khi m=3/2
`1)` Ptr có: `\Delta'=[-(m-1)]^2-2m+5`
`=m^2-4m+4+2=(m-2)^2+2 > 0 AA m`
`=>` Ptr có `2` nghiệm phân biệt `AA m`
`2)` Ptr có `2` nghiệm trái dấu `<=>ac < 0`
`<=>2m-5 < 0<=>m < 5/2`
`3) AA m` ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m-2),(x_1.x_2=c/a=2m-5):}`
Ta có: `A=x_1 ^2+x_2 ^2`
`<=>A=(x_1+x_2)^2-2x_1.x_2`
`<=>A=(2m-2)^2-2(2m-5)`
`<=>A=4m^2-8m+4-4m+10`
`<=>A=4m^2-12m+14`
`<=>A=(2m-3)^2+5 >= 5 AA m`
`=>A_[mi n]=5`
Dấu "`=`" xảy ra `<=>2m-3=0<=>m=3/2`