K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

A B C D M N E O K

Ta có

\(E\in MN\) mà \(MN\in\left(OMN\right)\Rightarrow E\in\left(OMN\right)\)

\(O\in\left(OMN\right)\)

\(\Rightarrow EO\in\left(OMN\right)\)

Ta có

\(E\in BD\) mà \(BD\in\left(BCD\right)\Rightarrow E\in\left(BCD\right)\)

\(O\in\left(BCD\right)\)

\(EO\in\left(BCD\right)\)

Trong (BCD) kéo dài EO cắt CD tại K

=> \(K\in\left(OMN\right);K\in CD\) => K chính là giao của CD với (OMN)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: MP cắt BC tại E mà BC thuộc (BCD)

Nên: E là giao điểm của đường thẳng MP với mặt phẳng (BCD). 

b) Ta có: EN cắt CD tại Q mà EN thuộc (MNP) 

Nên: Q là giao điểm của đường thẳng CD với mặt phẳng (MNP).

c) Ta có: P thuộc (MNP) và (ACD)

Q thuộc (MNP) và (ACD)

Nên PQ là giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP). 

d) △ACN có: \(\dfrac{AP}{AC}=\dfrac{AG}{AN}=\dfrac{2}{3}\)

Suy ra: PG // CN 

Do đó: △PIG đồng dạng với △NIC

Do đó: C, I, G thẳng hàng. 

17 tháng 11 2023

loading...

Chọn C

Chọn B

27 tháng 2 2023

Nguyễn Lê Phước Thịnh                                                         , làm thế nào hả pạn

NV
20 tháng 1

Do I là trọng tâm \(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}+\overrightarrow{IA}+\overrightarrow{AD}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AI}\) (1)

Đặt \(\overrightarrow{AI}=x.\overrightarrow{AS}\) (2)

Từ giả thiết:

\(AM=2MB\Rightarrow\overrightarrow{AM}=2\overrightarrow{MA}+2\overrightarrow{AB}\Rightarrow\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AB}\) \(\Rightarrow\overrightarrow{AB}=\dfrac{3}{2}\overrightarrow{AM}\) (3)

\(\overrightarrow{AN}=\overrightarrow{NC}=\overrightarrow{NA}+\overrightarrow{AC}\Rightarrow\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\) \(\Rightarrow\overrightarrow{AC}=2\overrightarrow{AN}\) (4)

\(\overrightarrow{AP}=3\overrightarrow{PD}=3\overrightarrow{PA}+\overrightarrow{AD}\Rightarrow\overrightarrow{AP}=\dfrac{3}{4}\overrightarrow{AD}\) \(\Rightarrow\overrightarrow{AD}=\dfrac{4}{3}\overrightarrow{AP}\) (5)

Thế (2);(3);(4);(5) vào (1):

\(\dfrac{3}{2}\overrightarrow{AM}+2\overrightarrow{AN}+\dfrac{4}{5}\overrightarrow{AP}=3x.\overrightarrow{AS}\)

\(\Rightarrow\overrightarrow{AS}=\dfrac{1}{2x}\overrightarrow{AM}+\dfrac{2}{3x}\overrightarrow{AN}+\dfrac{4}{15x}\overrightarrow{AP}\)

Theo định lý về đồng phẳng, do S, M, N, P đồng thẳng nên:

\(\dfrac{1}{2x}+\dfrac{2}{3x}+\dfrac{4}{15x}=1\) \(\Rightarrow x=\dfrac{43}{30}\)

Ủa có nhầm gì ko mà số xấu ta

NV
20 tháng 1

Định lý về đồng phẳng đã nói ở đây, phần này rất hay sử dụng trong toán tỉ lệ không gian nên em nhớ là tốt nhất:

Cho hình chóp S.ABCD có đáy là hình bình hành. Lấy điểm M sao cho \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightar... - Hoc24

 

NV
7 tháng 1

Trong mp (ACD) kéo dài MN và CD cắt nhau tại I

Trong mp (BCD) nối IQ cắt BD tại J

Áp dụng định lý Menelaus trong tam giác ACD:

\(\dfrac{AM}{MC}.\dfrac{CI}{ID}.\dfrac{DN}{NA}=1\Rightarrow1.\dfrac{CI}{ID}.\dfrac{1}{2}=1\Rightarrow IC=2ID\)

Do \(BC=4BQ\Rightarrow QC+QB=4QB\Rightarrow QC=3QB\)

Menelaus cho tam giác BCD:

\(\dfrac{QC}{QB}.\dfrac{BJ}{JD}.\dfrac{DI}{IC}=1\Rightarrow3.\dfrac{BJ}{JD}.\dfrac{1}{2}=1\Rightarrow\dfrac{BJ}{JD}=\dfrac{2}{3}\)

Menelaus cho tam giác CQI:

\(\dfrac{ID}{DC}.\dfrac{CB}{BQ}.\dfrac{QJ}{JI}=1\Rightarrow1.4.\dfrac{JQ}{JI}=1\Rightarrow\dfrac{JQ}{JI}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{JB}{JD}+\dfrac{JQ}{JI}=\dfrac{2}{3}+\dfrac{1}{4}=\dfrac{11}{12}\)

NV
7 tháng 1

Điểm P là điểm nào em nhỉ?

11 tháng 4 2019

Giải bài 8 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.

E ∈ MP ⇒ E ∈ (PMN)

E ∈ BD ⇒ E ∈ (BCD)

⇒ E ∈ (PMN) ∩ (BCD)

Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)

⇒ EN = (PMN) ∩ (BCD)

b) Trong mp(BCD) : gọi giao điểm EN và BC là F.

F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)

 

⇒ F = (PMN) ∩ BC.