K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

Vẽ OM⊥AB⇒OM⊥CD. 

Xét đường tròn (O;OC)  (đường tròn nhỏ) có OM là một phần đường kính, CD là dây và  OM⊥CD nên M là trung điểm của CD hay MC=MD (định lý)

Xét đường tròn (O;OA)   (đường tròn lớn) có OM là một phần đường kính, AB là dây và OM⊥AB nên M là trung điểm của AB hay MA=MB (định lý)

Ta có MA=MB  và MC=MD (cmt) nên trừ các đoạn thẳng theo vế với vế ta được MA−MC=MB−MD ⇒AC=BD.

Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau. 

1 tháng 12 2021

loading...

 

9 tháng 5 2021

Vẽ OM⊥AB⇒OM⊥CD. 

Xét đường tròn (O;OC)  (đường tròn nhỏ) có OM là một phần đường kính, CD là dây và  OM⊥CD nên M là trung điểm của CD hay MC=MD (định lý)

Xét đường tròn (O;OA)   (đường tròn lớn) có OM là một phần đường kính, AB là dây và OM⊥AB nên M là trung điểm của AB hay MA=MB (định lý)

Ta có MA=MB  và MC=MD (cmt) nên trừ các đoạn thẳng theo vế với vế ta được MA−MC=MB−MD ⇒AC=BD.

Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau. 

9 tháng 5 2021

á em lộn

a) Cho hai đường tròn (O; R)(O; R) và (O′; r)(O′; r) với R>r. Nếu OO′=R−rOO′=R−r thì hai đường tròn tiếp xúc trong.

b) +) Nếu tam giác có ba đỉnh nằm trên đường tròn và có 1 cạnh là đường kính của đường tròn đó thì tam giác đó là tam giác vuông. 

+) Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây đó.

3 tháng 6 2017

Nguyễn Duy Khánh

Vẽ OM⊥AB.

Theo tính chất đường kính vuông góc với một dây ta được MA=MB và MC=MD.

Từ đó suy ra AC=BD.

Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau.

Ai k mình và kết bạn với mình mình sẽ trả ơn .

6 tháng 5 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Giả sử vị trí các điểm theo thứ tự là A, C, B, D.

Kẻ OH ⊥ CD. Theo tính chất đường kính vuông góc với một dây ta có:

    HA = HB, HC = HD

Nên AC = HA – HC = HB – HD = BD

Vậy AC = BD.

(Trường hợp vị trí các điểm theo thứ tự là A, D, C, B chứng minh tương tự.)

22 tháng 9 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Giả sử vị trí các điểm theo thứ tự là A, C, B, D.

Kẻ OH ⊥ CD. Theo tính chất đường kính vuông góc với một dây ta có:

    HA = HB, HC = HD

Nên AC = HA – HC = HB – HD = BD

Vậy AC = BD.

(Trường hợp vị trí các điểm theo thứ tự là A, D, C, B chứng minh tương tự.)

25 tháng 4 2017

Hướng dẫn giải:

Vẽ OM⊥ABOM⊥AB.

Theo tính chất đường kính vuông góc với một dây ta được MA=MB và MC=MD.

Từ đó suy ra AC=BD.

Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau.

27 tháng 10 2023

a: ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của \(\widehat{AOB}\)

Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

b: Gọi giao điểm của AB với OC là H

ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>HA=HB=12(cm)

ΔAHO vuông tại H

=>\(HA^2+HO^2=AO^2\)

=>\(HO^2=15^2-12^2=81\)

=>HO=9(cm)

Xét ΔOAC vuông tại A có AH là đường cao

nên OH*OC=OA^2

=>OC=15^2/9=25(cm)

16 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ OI ⊥ AB. Ta có: OI ⊥ CD

Trong đường tròn (O) (nhỏ) ta có : OI ⊥ AB

Suy ra :

IA = IB (đường kính vuông góc dây cung)    (1)

Trong đường tròn (O) (lớn) ta có : OI ⊥ CD

Suy ra :

IC = ID (đường kính vuông góc dây cung)

Hay IA + AC = IB + BD     (2)

Từ (1) và (2) suy ra: AC = BD.

20 tháng 8 2021

a) OC và OD là các tia phân giác của hai góc kề bù \widehat{AOM}\widehat{BOM} nên OC \perp OD.

Vậy \widehat{COD}=90^{\circ}.

b) Theo tính chất của hai tiếp tuyến cắt nhau, ta có: CM=AC, DM=BD

Do đó CD=CM+DM=AC+BD.

c) Ta có: AC.BD=CM.MD

Xét tam giác COD vuông tại O và OM \perp CD nên ta có

CM. MD=OM^{2}=R^{2} (R là bán kính của đường tròn O).

Vậy AC.BD=R^2 (không đổi).