Bài 37: Cho hai số tự nhiên a và b thõa mãn số m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8

mình chưa rõ đề bn ơi

19 tháng 8

Olm chào em. Đây là toán nâng cao chuyên đề đếm số cách sắp xếp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

Giải:

Chữ số lớn nhất là chữ số 9

Các số thỏa mãn đề bài có dạng: \(\overline{ab9ba}\)

Trong đó có 9 cách chọn a

Có 10 cách chọn b

Số các số thỏa mãn đề bài là:

9 x 10 = 90 (số)

Vậy tập hợp A có 90 phần tử


22 tháng 10 2023
  1. Để chứng minh rằng số m cũng là một bội số của 121, ta cần chứng minh rằng (16a+17b)(17a+16b) chia hết cho 11 và 121.

Đầu tiên, chúng ta xét xem (16a+17b)(17a+16b) chia hết cho 11 hay không. Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Vì 11 là một số nguyên tố, nên theo tính chất của phép nhân, để m là một bội số của 11, thì mỗi thành phần của m cũng phải là một bội số của 11.

Ta thấy rằng 272a^2 và 272b^2 đều chia hết cho 11, vì 272 chia hết cho 11. Vì vậy, ta chỉ cần chứng minh rằng 528ab chia hết cho 11 để kết luận m là một bội số của 11.

Để chứng minh điều này, ta sử dụng tính chất căn bậc hai modulo 11. Ta biết rằng căn bậc hai của 11 là 5 hoặc -5 (vì 5^2 = 25 ≡ 3 (mod 11)). Vì vậy, ta có:

(16a+17b)(17a+16b) ≡ (5a+6b)(6a+5b) (mod 11).

Mở ngoặc, ta được:

(5a+6b)(6a+5b) ≡ 30ab + 30ab ≡ 60ab ≡ 6ab (mod 11).

Vì 6 không chia hết cho 11, nên 6ab cũng không chia hết cho 11. Do đó, ta kết luận rằng 528ab không chia hết cho 11 và m là một bội số của 11.

Tiếp theo, chúng ta cần chứng minh rằng m là một bội số của 121. Để làm điều này, ta cần chứng minh rằng m chia hết cho 121.

Một cách để chứng minh rằng m chia hết cho 121 là tìm một số tự nhiên k sao cho m = 121k. Để làm điều này, chúng ta cần tìm một số tự nhiên k sao cho (16a+17b)(17a+16b) = 121k.

Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Chúng ta đã chứng minh rằng m là một bội số của 11, vậy m = 11m' với m' là một số tự nhiên.

Thay thế m vào công thức m = 272a^2 + 528ab + 272b^2, ta có:

11m' = 272a^2 + 528ab + 272b^2.

Chia cả hai vế của phương trình cho 11, ta có:

m' = 24a^2 + 48ab + 24b^2.

Như vậy, m' là một số tự nhiên. Điều này cho thấy rằng m chia hết cho 121 và m là một bội số của 121.

  1. Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, chúng ta cần tìm tổng của tất cả các số tự nhiên từ 10 đến 99 không chia hết cho 3 và 5.

Để tính tổng này, chúng ta có thể sử dụng công thức tổng của một dãy số từ một số đến một số khác. Công thức này là:

Tổng = (Số lượng số trong dãy) * (Tổng của số đầu tiên và số cuối cùng) / 2,

trong đó, Số lượng số trong dãy = (Số cuối cùng - Số đầu tiên) + 1.

Áp dụng công thức này vào bài toán, ta có:

Số đầu tiên = 10, Số cuối cùng = 99, Số lượng số trong dãy = (99 - 10) + 1 = 90.

Tổng = 90 * (10 + 99) / 2 = 90 * 109 / 2 = 90 * 54,5 = 4.905.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 4.905.

22 tháng 10 2023

Bài toán 1: Để chứng minh số m cũng là một bội số của 121, ta sẽ sử dụng một số tính chất của phép chia.

Ta có: m = (16a + 17b)(17a + 16b) = (17a + 16b)^2 - (ab)^2

Vì m là một bội số của 11, nên ta có thể viết m dưới dạng m = 11k, với k là một số tự nhiên.

Từ đó, ta có (17a + 16b)^2 - (ab)^2 = 11k.

Áp dụng công thức (a + b)^2 - (ab)^2 = (a - b)^2, ta có (17a + 16b + ab)(17a + 16b - ab) = 11k.

Ta có thể chia hai trường hợp để xét:

Trường hợp 1: (17a + 16b + ab) chia hết cho 11. Trường hợp 2: (17a + 16b - ab) chia hết cho 11.

Trong cả hai trường hợp trên, ta đều có một số tự nhiên tương ứng với mỗi trường hợp.

Do đó, nếu m là một bội số của 11, thì m cũng là một bội số của 121.

Bài toán 2: Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, ta cần xác định tập hợp các số thỏa mãn điều kiện trên và tính tổng của chúng.

Các số tự nhiên hai chữ số không chia hết cho 3 và 5 có dạng AB, trong đó A và B lần lượt là các chữ số từ 1 đến 9.

Ta thấy rằng có 3 chữ số (3, 6, 9) chia hết cho 3 và 2 chữ số (5, 0) chia hết cho 5. Vì vậy, số các chữ số không chia hết cho 3 và 5 là 9 - 3 - 2 = 4.

Do đó, mỗi chữ số A có 4 cách chọn và mỗi chữ số B cũng có 4 cách chọn.

Tổng tất cả các số có hai chữ số không chia hết cho 3 và 5 là 4 x (1 + 2 + 3 + ... + 9) x 4 = 4 x 45 x 4 = 720.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 720.

21 tháng 11 2021

https://lazi.vn/users/dang_ky?u=dong.do-thi-thu

Đăng ký đi bn!

21 tháng 11 2021

1+100-589+345678923546576849=?

ĐỐ ĐẤY

19 tháng 2 2022

a, Trong ngày thứ nhất Lan đọc số trang sách là:

360 x 2/9 = 80 ( trang )

Số trang sách còn lại sau khi Lan đọc xong ngày thứ nhất là:

360 - 80 = 280 ( trang )

Số trang sách lan đọc ngày thứ hai là:

280 x 25/100 = 70 ( trang )

c, Số sách Lan đọc trong ngày thứ tư là:

15 : 1/6 = 90 ( trang )

Số trang sách Lan đọc trong ngày thứ ba là:

360 - ( 90 + 70 + 80 ) = 120 ( trang )

Đáp số: 

10 tháng 11 2021

\(A=2+2^2+2^3+2^4+.....2^{100}\)

\(=2.3+2^3.3+....2^{99}.3\)

\(=6\left(1+2^2+....2^{98}\right)⋮6\)

3 tháng 7

A = 2 + 2\(^2\) + 2\(^3\) + ...+ \(2^{100}\)

Xét dãy số: 1; 2; 3;...; 100

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (100 - 1) : 1+ 1 = 100

Vì 100 : 2 = 50

Nên nhóm 2 số hạng liên tiếp của A vào nhau ta được:

A = (2 + 2\(^2\)) + (\(2^3\) + \(2^4\)) + ...+(2\(^{99}\) + 2\(^{100}\))

A = 2.(2 + 1) + 2\(^3\).(1 + 2) + ...+ 2\(^{99}.\left(1+2\right)\)

A = 2.3 + 2\(^3\).3+ ...+ 2\(^{99}\). 3

A = 2.3.(1 + 2\(^3\) + ...+ 2\(^{99}\))

A = 6.(1+ 2\(^3\) + ... + 2\(^{99}\)) ⋮ 6 (đpcm)

NM
22 tháng 10 2021

ta có :

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)

b. ta có :

\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)

\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)

23 tháng 3
b B) 123,8 34,15 12, 49 5,85 2,49 10, 2

cíu làm giúp với >=D.