Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A C B I M N J
a) Ta có I là trung điểm MN
=> OI vuông MN
Xét tứ giác ABOI có:\(\widehat{ABO}=90^o\)( vì AB là tiếp tuyến(O; R))
và \(\widehat{AIO}=90^o\)
=> \(\widehat{AIO}+\widehat{ABO}=180^o\)
=> Tứ giác ABOI nội tiếp (1)
Ta lại có: \(\widehat{ACO}=90^o\)( AC là tiếp tuyến (O;R))
Xét tứ giác ABOC có: \(\widehat{ABO}+\widehat{ACO}=180^o\)
=> Tứ giác ABOC nội tiếp (2)
Như vậy A,B, C, O, I cùng nằm trên môt đường tròn
b) AB=OB mà AB=AC; OB=OC
=> AB=AC=OB=OC
=> ABOC là hình thoi có \(\widehat{ABO}=90^o\)
=> ABOC là hình vuông
c) Áp dụng định lí piago cho tam giác ABO vuông tại B ta có:
\(AO^2=AB^2+BO^2=R^2+R^2=2R^2\Rightarrow AO=R\sqrt{2}\)
Gọi J là trung điểm AO khi đó các tam giác ABO vuông tại B, ACO vuông tại C đều nhận AO là cạnh huyền
=> JA=JB=JC=JO
=> J là tâm đường tròn ngoại tiếp ABOC
như vậy bán kính đường tròn ngoại tiếp ABOC bằng \(JA=\frac{1}{2}AO=\frac{R\sqrt{2}}{2}\)
Có bán kính rồi em tính diện tích và chu vi đi nhé!
1) Do B, C cùng thuộc đường tròn đường kính AO nên \(\widehat{ABO}=\widehat{ACO}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
Vậy nên AB, AC là các tiếp tuyến của đường tròn (O).
Xét tam giác vuông ABO có \(AO=R\sqrt{2};OB=R\)
Áp dụng định lý Pi-ta-go ta có:
\(AB=\sqrt{AO^2-BO^2}=R\)
Vậy thì AC = AB = R.
2) Ta thấy tứ giác ABOC có AB = BO = OC = CA = R nên nó là hình thoi.
Lại có \(\widehat{ABO}=90^o\) nên ABOC là hình vuông.
3) Xét tam giác ADC và tam gác ACE có:
Góc A chung
\(\widehat{ACD}=\widehat{AEC}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung DC)
\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g-g\right)\)
\(\Rightarrow\frac{AD}{AC}=\frac{AC}{AE}\Leftrightarrow AD.AE=AC^2=R^2\) = hằng số.
Hoàn toàn tương tự ta cũng có AM.AN = AB2 = R2 = hằng số.
Vậy nên AM.AN = AD.AE = R2.
4) Xét đường tròn (O), ta có K là trung điểm dây cung MN nên theo liên hệ đường kính dây cung, ta có: \(OK\perp MN\) hay \(\widehat{AKO}=90^o\)
Vậy thì K thuộc đường tròn đường kính OA.
Do AMN là cát tuyến nên K thuộc cung tròn BmC (trên hình vẽ).
5) Ta có ABOC là hình vuông nên AO và BC cắt nhau tại trung điểm mỗi đường.
Vậy thì BC qua tâm I.
Từ đó ta có \(\widehat{IJO}=90^o\)
Lại vừa chứng minh được \(\widehat{JKO}=90^o\).
Tứ giác IJKO có tổng hai góc đối bằng 180o nên IJKO là tứ giác nội tiếp hay O, K, I, J cùng thuộc một đường tròn.
Ta có AB = AC nên \(\widebat{AB}=\widebat{AC}\Rightarrow\widehat{BKA}=\widehat{CBA}=\widehat{JBA}\)
Vậy thì \(\Delta ABJ\sim\Delta AKB\left(g-g\right)\Rightarrow\frac{AB}{AK}=\frac{AJ}{AB}\Rightarrow AJ.AK=AB^2\)
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)
Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC
\(\Rightarrow ABOC\)nội tiếp ( dhnb )
b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung
\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)
Xét tam giác ABM và tam giác ANB có:
\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)
\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)
c) Gọi H là giao điểm của BC và AO
Xét tam giác ABH và tam giác AOB có:
\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)
\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)
Xét tam giác AMH và tam giác AON có:
\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)
\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)
Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)
\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)
Xét tứ giác MHON có
\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác MHON
\(\Rightarrow MHON\)nội tiếp ( dhnb )
\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)
Vì H là giao điểm của BC và AO ( h.vẽ )
Mà \(AB,AC\)là tiếp tuyến của (O)
\(\Rightarrow BC\perp OA\)
\(\Rightarrow\widehat{BHO}=90^0\)
Vì NF là tiếp tuyến của (O) tại N
\(\Rightarrow\widehat{ÒNF}=90^0\)
Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON
=> FHON nội tiếp ( dhnb )
\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)
\(\Rightarrow FMON\)nội tiếp (dhnb)
\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)
\(\Rightarrow\widehat{FMO}=90^0\)
\(\Rightarrow FM\perp OM\)
\(\Rightarrow FM\)là tiếp tuyến của (O)
d) Vì E thuộc đường tròn ngoại tiếp tam giác MNO
\(\Rightarrow E\)thuộc đường tròn đường kính OF
\(\Rightarrow\widehat{OEF}=90^0\)
+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO
\(\Rightarrow\widehat{AEO}=90^0\)
\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)
\(\Rightarrow A,E,F\)thẳng hàng
Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)
Gọi K là trung điểm của MN
\(\Rightarrow OF\perp MN\)
\(\Rightarrow AK\perp OF\)
Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P
=> P là trực tâm của tam giác AOF
\(\Rightarrow OP\perp AF\left(6\right)\)
Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )