\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{y}\) và x4y4
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Bài 3: 

Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)

Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)

Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))

=> a = 9.1 = 9

Ta có: x2 = 9 và y2 = 1

=> x = -3, 3

     y = -1; 1

24 tháng 3 2019

Mình làm bài 4, bài 5 làm tương tự bài 4 nhé

Biết rằng: \(\left|A\right|\ge A\)

\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)

Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)

Với x = 5 thì A đạt gtnn là: 4

Bài 1:Tìm x:a) (x4)3 = \(\frac{x^{18}}{x^7}\)(x\(\ne\)0)b) x : \(\frac{3}{8}\)+\(\frac{5}{8}\)= xBài 2:Cho A = \(\frac{1}{2^2}\)+ \(\frac{1}{2^4}\)+ \(\frac{1}{2^6}\)+ ... +\(\frac{1}{2^{100}}\)CM: A < \(\frac{1}{3}\)Bài 3:Tìm số x, y, z theo a, b, c biết:ax = by = cz và xyz = 8 : (abc), (a, b, c \(\ne\)0)Bài 3:Cho x và y là hai đại lượng TLN với nhau. Khi x nhận giá trị x1 = 2, x2 = 5 thì các giá trị tương ứng y1, y2 thỏa mãn:2y1 + 7y2 = 48....
Đọc tiếp

Bài 1:

Tìm x:

a) (x4)3 = \(\frac{x^{18}}{x^7}\)(x\(\ne\)0)

b) x : \(\frac{3}{8}\)+\(\frac{5}{8}\)= x

Bài 2:

Cho A = \(\frac{1}{2^2}\)\(\frac{1}{2^4}\)\(\frac{1}{2^6}\)+ ... +\(\frac{1}{2^{100}}\)

CM: A < \(\frac{1}{3}\)

Bài 3:

Tìm số x, y, z theo a, b, c biết:

ax = by = cz và xyz = 8 : (abc), (a, b, c \(\ne\)0)

Bài 3:

Cho x và y là hai đại lượng TLN với nhau. Khi x nhận giá trị x1 = 2, x2 = 5 thì các giá trị tương ứng y1, y2 thỏa mãn:

2y1 + 7y2 = 48. Hãy biểu diễn y qua x.

Bài 4:

Tìm x để biểu thức sau đạt giá trị lớn nhất. Hãy tìm giá trị lớn nhất đó:

A = \(\frac{2016}{|x-2015|+2}\)

Bài 5:

A = 1-\(\frac{3}{4}\)+\(\left(\frac{3}{4}\right)^2\)-\(\left(\frac{3}{4}\right)^3\)+\(\left(\frac{3}{4}\right)^4\)- ... -\(\left(\frac{3}{4}\right)^{2009}\)+\(\left(\frac{3}{4}\right)^{2010}\)

Chứng tỏ A không phải là số nguyên.

Bài 5:

Một trường có 3 lớp 7. Biết rằng \(\frac{2}{3}\)số học sinh lớp 7A bằng \(\frac{3}{4}\)số học sinh lớp 7B bằng\(\frac{4}{5}\)số học sinh lớp 7C. Lớp 7C có số học sinh ít hơn tổng số học sinh của hai lớp kia là 57 bạn. Tính số học sinh mỗi lớp.

 

Gần thi rồi, các bạn ơi HELP mình với! Ai biết bài nào thì HELP gấp!!!!!

4
20 tháng 12 2016

Dài ngoằng nhìn phát ngán

a)\(\left(x^4\right)^{^3}=\frac{x^{18}}{x^7}\Leftrightarrow x^{12}=x^{18-7}\Leftrightarrow x^{12}=x^{11}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

20 tháng 12 2016

X=0=>loại

19 tháng 6 2016

Bài 1: Sử dụng phép thế

Có x - y = 2 => x = 2 + y

Thay x = 2 + y vào các biểu thức cần tính

Bài 2:

\(P=9-2\left|x-3\right|\le9\) dấu bằng <=> x = 3

\(Q=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\) dấu bằng <=> \(\left(x-2\right)\left(8-x\right)\ge0\)

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)