Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
\(\Leftrightarrow-3x^3-5x^2+4x+4+m\left(x^3+4x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(1-x\right)\left(3x+2\right)+m\left(x+2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(-3x^2+x+2+mx^2+2mx+m\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(m-3\right)x^2+\left(2m+1\right)x+m+2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left(m-3\right)x^2+\left(2m+1\right)x+m+2=0\left(1\right)\end{matrix}\right.\)
Để pt đã cho có 3 nghiệm pb nhỏ hơn 1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb khác -2 và nhỏ hơn 1
\(f\left(-2\right)=m-12\ne0\Rightarrow m\ne12\)
\(m\ne3\) ; \(\Delta=\left(2m+1\right)^2-4\left(m-3\right)\left(m+2\right)=8m+25>0\Rightarrow m>-\frac{25}{8}\)
Để (1) có 2 nghiệm pb thỏa mãn \(x_1< x_2< 1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m+2}{m-3}+\frac{2m+1}{m-3}+1>0\\\frac{2m+1}{m-3}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4m}{m-3}>0\\\frac{7}{m-3}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\\m< 3\end{matrix}\right.\) \(\Rightarrow m< 0\)
Kết hợp lại ta được: \(-\frac{25}{8}< m< 0\)
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
TH1: m=0
=>-(0-1)x=0
=>x=0
=>Loại
TH2: m<>0
\(\text{Δ}=\left(-m+1\right)^2-4m\cdot4m=m^2-2m+1-16m^2=-15m^2-2m+1\)
\(=-15m^2-5m+3m+1=\left(3m+1\right)\left(-5m+1\right)\)
Để pt có nghiệm đúng với mọi x thuộc R thì (3m+1)(-5m+1)>=0
=>(3m+1)(5m-1)<=0
=>-1/3<=m<=1/5
bạn thêm đấu bằng vào kết quả hộ mình nhé. sửa lại \(2\le m\le4\)
bài 1: bạn chỉ cần giải đen ta làm sao cho nó >=0 .Mình l;àm mẫu câu a nhé:
a) để phương trình có 2 no phân biệt thì \(\Delta\)>=0
\(\Leftrightarrow\left(2m-5\right)^2-\left(m-3\right)\left(5m-11\right)\) >=0
\(\Leftrightarrow-m^{^{ }2}+6m-8\ge0\)
\(\Leftrightarrow2< m< 4\)
vậy 2<m<4 thỏa mãn đề bài
\(c,PT\Leftrightarrow m^2x-9x-\left(m^2-4m+3\right)=0\\ \Leftrightarrow x\left(m^2-9\right)-\left(m-3\right)\left(m-1\right)=0\)
PT có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-9=0\\\left(m-3\right)\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow m=3\)
\(d,PT\Leftrightarrow m^2x-m^2-4mx+5m-4=0\\ \Leftrightarrow x\left(m^2-4m\right)-\left(m^2-5m+4\right)=0\\ \Leftrightarrow xm\left(m-4\right)-\left(m-1\right)\left(m-4\right)=0\)
PT có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-4\right)=0\\\left(m-4\right)\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow m=4\)