K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

10 tháng 4 2018

1

a, 4x2+4x+2

= 2x2+2x2+2x+2x+2

= 2x2+(2x2+2x)+(2x+2)

= 2x2+ 2x(x+1)+2(x+1)

= 2x2+(2x+2)(x+1)

= 2x2+2(x+1)(x+1)

=2x2+2(x+1)2

Để 2x2+2(x+1)2=0

=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)

=> đa thức 4x2+4x+2 vô nghiệm

10 tháng 4 2018

1

b, y2+6y+10

= y2+3y+3y+9+1

= y(3+y)+3(y+3)+1

= (y+3)(y+3)+1

= (y+3)2+1

Có (y+3)2\(\ge\)0;1>0

=> (y+3)2+1>0

=> y2+6y+10 vô nghiệm

12 tháng 3 2019

a) x2 - 2x + y2 - 4y + 5 = 0

 <=>x^2-2x+1 + y^2-4y+4=0 

<=>(x-1)^2 + (y-1)^2 =0 
<=>x=1 và y=2

12 tháng 3 2019

a) \(x^2-2x+y^2-4y+5=0\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2++\left(y-2\right)^2=0\)

Mà \(\left(x-1\right)^2\ge0\)và \(\left(y-2\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi x-1=0 và y-2=0

=> x=1 và y=2