K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Vẽ ∆ABD, biết ba cạnh:

AD = 4cm, BD = 3cm, AB = 2.5 cm.

Vẽ ∆BCD, biết hai cạnh và góc xen giữa:

\(BD=3cm,\widehat{DBC}=60^0,BC=3cm\) (A và C thuộc hai nửa mặt phẳng đối nhau bờ BD)

Tứ giác.

21 tháng 6 2017

Cái này mà đem đi hỏi thì về quê chăn vịt nhé

16 tháng 12 2018

- Vẽ tam giác ABD

      + Vẽ cạnh AD dài 4cm

      + Tại A vẽ cung tròn tâm A bán kính 2,5cm

      + Tại D vẽ cung tròn tâm D bán kính 3cm

      + Hai cung tròn cắt nhau tại B

⇒ Ta được tam giác ABD

- Vẽ tam giác DBC

      + Dùng thước đo độ vẽ tia Bx sao cho góc DBx = 60 0

      + Trên Bx xác định C sao cho BC = 3cm

⇒ Ta được tam giác BDC

⇒Ta được tứ giác ABCD cần vẽ

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

2 tháng 11 2018

- Cách vẽ hình 9:

+ Vẽ đoạn thẳng AB = 3cm

+ Quay cung tròn tâm A, bán kính 3cm, cung tròn tâm B bán kính 3,5cm. Hai cung tròn này cắt nhau tại C.

+ Quay cung tròn tâm C bán kính 2cm và cung tròn tâm A bán kính 1,5cm. Hai cung tròn này cắt nhau tại D.

+ Nối các đoạn BC, AC, CD, AD ta được hình cần vẽ.

Giải bài 4 trang 67 Toán 8 Tập 1 | Giải bài tập Toán 8

- Cách vẽ hình 10:

+ Vẽ góc Giải bài 4 trang 67 Toán 8 Tập 1 | Giải bài tập Toán 8 . Trên tia Nx, lấy điểm M sao cho MN = 4cm, trên tia Ny lấy điểm P sao cho NP = 2cm.

+ Vẽ cung tròn tâm P bán kính 1,5cm và cung tròn tâm M bán kính 3cm. Hai cung tròn này cắt nhau tại Q.

+ Nối PQ, MQ ta được hình cần vẽ.

Giải bài 4 trang 67 Toán 8 Tập 1 | Giải bài tập Toán 8

29 tháng 6 2017

Tứ giác.

29 tháng 8 2019

Chép ở lời giải - chỉ dẫn - đáp số trong Bài tập Toán

2 tháng 8 2016

A B C D M N I K

nối BD và AC

trong tam giác ABC ta có: M và N lần luợt là trung đỉêm của AB và AC

=> MN là đuờng trung bình của tam giác ABC

=> MN//AC(

trong tam giác ADC ta có I và K lần luợt là trung điểm của DC và DA

=> KI là đuờng trung bình của tam giác ADC

=> KI//AC

ta có: KI//AC

        MN//AC

=> KI//MN(1)

trong tam giác ABD có M và K lần luợt là trung điểm của AB và AD

=> MK là đuờng trung bình của tam giác ADB 

=> MK//DB

trong tam giác CDB có I và N lần luợt là trung điểm của DC và CB

=> IN là đuờng trung bình của tam, giác CDB

=>IN//BD

ta có: MK//DB

         IN//DB

=> MK//IN(2)

từ (1)(2)=> MK//IN

                  MN//KI

=> MNIK là hình bình hành

2 tháng 8 2016

Bài 1:Vẽ đường chéo BD
Xét tam giác ADB có:
M là trung điểm của AB
K là trung điểm của AD
=>KM là đường trung bình của tam giác ADB
=>KM//DB(1) và KM=1/2 DB(3)
Xét tam giác BCD có:
N là trung điểm của BC
I là trung điểm của DC
=>NI là đường trung bình của tam giác BCD
=>NI//DB(2) và NI=1/2DB(4)
Từ (1) và (2)=>KM//NI( //DB)(5)
Từ (3) và (4)=>KM=NI(=1/2 DB)(6)
Từ (5)  và (6)=>KMNI là hình bình hành (dhnb3)
 

Bài 2:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trug điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

=>ΔABC vuông tại A

21 tháng 4 2017

Vẽ lại các tứ giác ở hình 9, hình 10 sgk vào vở

* Cách vẽ hình 9: Vẽ tam giác ABC trước rồi vẽ tam giác ACD (hoặc ngược lại).

- Vẽ đoạn thẳng AC = 3cm.

- Trên cùng một nửa mặt phẳng bờ AC, vẽ cung tròn tâm A bán kính 1,5cm với cung tròn tâm C bán kính 2cm.

- Hai cung tròn trên cắt nhau tại B.

- Vẽ các đoạn thẳng AB, AC ta được tam giác ABC.

Tương tự ta sẽ được tam giác ACD.

Tứ giác ABCD là tứ giác cần vẽ.

* Cách vẽ hình 10: Vẽ tam giác MQP trước rồi vẽ tam giác MNP.

Vẽ tam giác MQP biết hai cạnh và góc xen giữa.

- Vẽ góc ˆxOy=700xOy^=700

- Trên tia Qx lấy điểm M sao cho QM = 2cm.

- Trên tia Qy lấy điểm P sao cho QP= 4cm.

- Vẽ đoạn thẳng MP, ta được tam giác MQP.

Vẽ tam giác MNP biết ba cạnh, với cạnh MP đã vẽ. Tương tự cách vẽ hình 9, điểm N là giao điểm của hai cung tròn tâm M, P bán kính lần lướt là 1,5cm; 3cm.

Tứ giác MNPQ là tứ giác cần vẽ.

21 tháng 4 2017

Bài giải:

Vẽ lại các tứ giác ở hình 9, hình 10 sgk vào vở

* Cách vẽ hình 9: Vẽ tam giác ABC trước rồi vẽ tam giác ACD (hoặc ngược lại).

- Vẽ đoạn thẳng AC = 3cm.

- Trên cùng một nửa mặt phẳng bờ AC, vẽ cung tròn tâm A bán kính 1,5cm với cung tròn tâm C bán kính 2cm.

- Hai cung tròn trên cắt nhau tại B.

- Vẽ các đoạn thẳng AB, AC ta được tam giác ABC.

Tương tự ta sẽ được tam giác ACD.

Tứ giác ABCD là tứ giác cần vẽ.

* Cách vẽ hình 10: Vẽ tam giác MQP trước rồi vẽ tam giác MNP.

Vẽ tam giác MQP biết hai cạnh và góc xen giữa.

- Vẽ góc xOy^=700

- Trên tia Qx lấy điểm M sao cho QM = 2cm.

- Trên tia Qy lấy điểm P sao cho QP= 4cm.

- Vẽ đoạn thẳng MP, ta được tam giác MQP.

Vẽ tam giác MNP biết ba cạnh, với cạnh MP đã vẽ. Tương tự cách vẽ hình 9, điểm N là giao điểm của hai cung tròn tâm M, P bán kính lần lướt là 1,5cm; 3cm.

Tứ giác MNPQ là tứ giác cần vẽ.

21 tháng 10 2021

a, Ta có \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=2:2:1:1\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

Áp dụng t/c dtsbn:

\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+1+2+2}=\dfrac{360^0}{6}=60^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=120^0\\\widehat{C}=60^0\\\widehat{D}=60^0\end{matrix}\right.\)

b, Vì \(\widehat{A}+\widehat{C}=120^0+60^0=180^0\) mà 2 góc này ở vị trí TCP nên AB//CD

Do đó ABCD là hình thang

Vì \(\widehat{A}=\widehat{B}=120^0\) nên ABCD là hình thang cân