K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2022

Chắc đề đúng là: (P): \(y=x^2\)

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=2mx-4\Leftrightarrow x^2-2mx+4=0\) (1)

Để (d) cắt (P) tại 2 điểm pb có hoành độ dương 

\(\Leftrightarrow\) (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-4>0\\x_1+x_2=2m>0\\x_1x_2=4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m>2\)

22 tháng 4 2022

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx-(2m+1)=0(*)$

Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$

$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$

$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$

Khi đó:

$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$

$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix} 0\leq m< 1\\ \sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)

Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)

10 tháng 2 2022

a, Thay m =-1 vào (d) ta được : \(y=-2x\)

Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)

Với x = 0 => y = 0 

Với x = -2 => y = 4 

Vậy với m = -1 thì (P) cắt (D) tại O(0;0) ; A(-2;4) 

b, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2-2mx-m-1=0\)

\(\Delta'=m^2-\left(-m-1\right)=m^2+m+1>0\forall m\)

Vậy pt luôn có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb 

c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)

Ta có : \(\left(x_1+x_2\right)^2-5x_1x_2\)Thay vào ta được 

\(4m^2-5\left(-m-1\right)=4m^2+5m+5\)

\(=4m^2+\frac{2.2m.5}{4}+\frac{25}{16}-\frac{25}{16}+5=\left(2m+\frac{5}{4}\right)^2+\frac{55}{16}\ge\frac{55}{16}\)

Dấu ''='' xảy ra khi m = -5/88 

Vậy với m = -5/88 thì GTNN của biểu thức trên là 55/16 

7 tháng 6 2017

Đáp án B

26 tháng 3 2022

Hoành độ giao điểm (P); (d) tm pt 

\(\frac{1}{4}x^2+x-m=0\Leftrightarrow x^2+4x-4m=0\)

\(\Delta'=4-\left(-4m\right)=4m+4\)

Để (P) cắt (d) tại 2 điểm pb khi m >= -1 

Để (P) ; (d) cắt nhau tại 2 điểm pb có hoành độ trái dấu khi \(x_1x_2=-4m< 0\Leftrightarrow m>0\)

\(\Rightarrow\hept{\begin{cases}m\ge-1\\m>0\end{cases}}\Leftrightarrow m>0\)