Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
b. Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath
a)Gọi d là ƯC(2n+1;6n+5) (d thuộc N*)
=>2n+1 chia hết cho d =>6n+6 chia hết cho d
=>6n+5 chia hết cho d
=>6n+6-6n-5 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(2n+1;6n+5)=1
=>đpcm
b)Gọi d là ƯC(3n+2;5n+3) (d thuộc N*)
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d =>15n+9 chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(3n+2;5n+3)=1
=>đpcm
\(a,76=2^2\cdot19\\ 1995=3\cdot5\cdot7\cdot19\\ \RightarrowƯCLN\left(76,1995\right)=19\)
\(b,\) Gọi \(d=ƯCLN\left(2n+1,3n+1\right)\)
\(\Rightarrow2n+1⋮d;3n+1⋮d\\ \Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+1,3n+1\right)=1\)
a) Giả sử ƯCLN(n,n+1)=d (d\(\in\)N*)
Nên n chia hết cho d \(\Rightarrow\)n+1-n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
n+1 chia hết cho d
Vậy ƯCLN(n,n+1)=1
b) Giả sử ƯCLN(n,2n+1)=d (d\(\in\)N*)
Nên n chia hết cho d
2n+1 chia hết cho d
Nên 2n chia hết cho d \(\Rightarrow\)2n+1-2n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
2n+1 chia hết cho d
Vậy ƯCLN(n,2n+1)=1