Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7)
= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7
= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7)
= 3
Vậy GTBT ko phụ thuộc vào biến
b, (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x
= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x
= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5)
= -6
Vậy GTBT ko phụ thuộc vào biến
a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )
= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7
= 3
Vậy biểu thức không phụ thuộc vào biến.
b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x
= 2x3 -4x2 +x - 1 - 5 + x2 - 2x3 +3x2 - x
= -1 - 5 = -6
Vậy biểu thức không phụ thuộc vào biến x
\(A=2x^2+x-x^3-2x^2+x^3-x+3=3\)=> k phụ thuộc vào biến
\(B=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3=24\)=> k phụ thuộc vào biến
a) \(\left(x+2\right)\left(x^2+2x+4\right)-x\left(x^2+1\right)+x+2\)
\(=x^3+8-x^3-x+x+2\)
\(=10\)
Vậy giá trị của bt không phụ thuộc vào gt của biến
b) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
\(=-76\)
Vậy gt của bt không phụ thuộc vào gt của biến
a) ta có: \(A_{\left(x\right)}=2x.\left(x+3\right)-3x^2.\left(x+2\right)+x.\left(3x^2+4x-6\right)\)
\(A_{\left(x\right)}=2x^2+6x-3x^3-6x^2+3x^3+4x^2-6x\)
\(A_{\left(x\right)}=\left(2x^2-6x^2+4x^2\right)+\left(6x-6x\right)+\left(3x^3-3x^3\right)\)
\(A_{\left(x\right)}=0\)
=> A(x) không phụ thuộc vào giá trị của x
phần b bn lm tương tự nha!
\(A=7.\left(x^2-5x+3\right)-x.\left(7x-35\right)-14\)
\(A=7x^2-35x+21-7x^2+35x-14\)
\(A=7\)
\(B=\left(4x-5\right).\left(x+2\right)-\left(x+5\right).\left(x-3\right)-3x^2-x\)
\(B=4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x\)
\(B=5\)
\(C=\left(6x-5\right).\left(x+8\right)-\left(3x-1\right).\left(2x+3\right)-9.\left(4x-3\right)\)
\(C=6x^2+48x-5x-40-6x^2-9x+2x+3-36x+27\)
\(C=-10\)
Học tốt
A = 7(x2 -5x +3) -x(7x-35) - 14
= 7x2 - 35x +21 -7x2 + 35x -14
= 21 -14
= 7
==>Biểu thức A không phụ thuộc vào biến
B = (4x - 5 )(x+2) - (x+5)(x-3) -3x2 -x
= 4x2 + 3x - 10 - x2 - 2x +15 -3x2 -x
= -10 +15
= 5
==>KL:(như A chỉ thay A=B)
Câu C tương tự như A và B (bạn phân tích ra là đc)
NHỚ K CHO MK NHA :)))
A = 7.(x2 - 5x + 3) - x . (7x - 35) - 14
= 7x2 - 35x + 21 - 7x2 + 35x - 14
= 7
Vậy biểu thức trên không phụ thuộc vào biến.
B = (4x - 5).(x + 2) - (x + 5).(x - 3) - 3x2 - x
= 4x2 + 8x - 5x - 10 - x2 + 3x - 5x + 15 - 3x2 - x
= 5
Vậy biểu thức trên không phụ thuộc vào biến.
C = (6x - 5).(x+8) - (3x - 1).(2x + 3) - 9.(4x - 3)
= 6x2 + 48x - 5x - 40 - 6x2 - 9x + 2x + 3 - 36x + 27
= 10
Vậy biểu thức trên không phụ thuộc vào biến.
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
a)
x(2x + 1) - x2(x + 2) + (x3 - x + 3)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=\left(x^3-x^3\right)+\left(2x^2-2x^2\right)+\left(x-x\right)+3\)
\(=3\)\(\left(ĐPCM\right)\)
b)
x(3x2 - x + 5) - (2x3 +3x - 16) - x(x2 - x + 2)
\(=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
\(=\left(3x^3-2x^3-x^3\right)-\left(x^2-x^2\right)+\left(5x-3x-2x\right)+16\)
\(=16\left(ĐPCM\right)\)