Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)
\(\Leftrightarrow a^2+b^2=-2ab\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)
b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)
\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)
c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tương tự câu b ta có a = b = c
Ta có (a-b+c)^2 luôn dương vì bingf phương của một số luôn dương
Vì cả 3 số a;b;c đều có vai trò như nhau nên
Giả sử:1+cả 3 số đều âm
2+một trong 3 số có 1 số bằng không(c=0)
3+hai số âm:một số dương (a;b âm)
4+một số âm;2 số dương(a âm)
13 sốâm thì tích 2 số dương *8ab dương(đpcm)
2 tích 2 số bằng 0 *8bc;8ca=0
3 tích 2 số dương 8ab dương
4 tích 2 số còn lại dương*8bc dương
vậy................
Do a;b;c ko đồng thời bằng 0 nên \(a^2+b^2+c^2>0\)
Giả sử cả 3 biểu thức đều không dương
\(\Rightarrow A+B+C\le0\)
\(\Leftrightarrow3\left(a+b+c\right)^2-8\left(ab+bc+ca\right)\le0\)
\(\Leftrightarrow3a^2+3b^2+3c^2-2ab-2bc-2ca\le0\)
\(\Leftrightarrow a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\) (vô lý do \(a^2+b^2+c^2>0\) và 3 số hạng còn lại đều ko âm)
Vậy điều giả sử là sai hay ít nhất 1 trong 3 biểu thức phải dương
#)Giải :
a) Để C/m a và b là hai số đối nhau => a + b = 0
Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)
\(\Rightarrowđpcm\)