\(2\left(a^2+b^2\right)=\left(a-b\right)^2\). C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

#)Giải :

a) Để C/m a và b là hai số đối nhau => a + b = 0

Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)

\(\Rightarrowđpcm\)

23 tháng 7 2019

a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2=-2ab\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)

b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)

c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tương tự câu b ta có a = b = c

9 tháng 8 2016

Ta có (a-b+c)^2 luôn dương vì bingf phương của một số luôn dương

Vì cả  3 số a;b;c đều có vai trò như nhau nên 

Giả sử:1+cả 3 số đều âm

2+một trong 3 số có 1 số bằng không(c=0)

3+hai số âm:một số dương (a;b âm)

4+một số âm;2 số dương(a âm)

13 sốâm thì tích 2 số dương *8ab dương(đpcm)

2 tích 2 số bằng 0 *8bc;8ca=0

3 tích 2 số dương 8ab dương 

4 tích 2 số còn lại dương*8bc dương

vậy................

NV
27 tháng 9 2020

Do a;b;c ko đồng thời bằng 0 nên \(a^2+b^2+c^2>0\)

Giả sử cả 3 biểu thức đều không dương

\(\Rightarrow A+B+C\le0\)

\(\Leftrightarrow3\left(a+b+c\right)^2-8\left(ab+bc+ca\right)\le0\)

\(\Leftrightarrow3a^2+3b^2+3c^2-2ab-2bc-2ca\le0\)

\(\Leftrightarrow a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\) (vô lý do \(a^2+b^2+c^2>0\) và 3 số hạng còn lại đều ko âm)

Vậy điều giả sử là sai hay ít nhất 1 trong 3 biểu thức phải dương