K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

=>DA=DE

b: DA=DE

=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

mà BD cắt AE tại F

nên F là trung điểm của AE

=>CF là đường trung tuyến của ΔAEC

20 tháng 4 2019

Xin lỗi mk ko biết vẽ hình trên máy

a) Xét tam giác ABD và tan giác EBD có :

BD chung 

góc ABD = góc EBD ( vì BD la phân giác góc B )

góc A = góc E ( = 90 )

=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )

=> AD = DE

Chúc bạn hc tốt

15 tháng 2 2021

lol

16 tháng 12 2023

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

16 tháng 12 2023

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

28 tháng 4 2019

Sai đề rùi
Góc ABE ko có cắt BD tại F đc nha!!!

28 tháng 4 2019

làm a b thui

\(\text{#TNam}\)

`a,` Xét Tam giác `ABD` và Tam giác `EBD` có:

`\text {BD chung}`

\(\widehat{ABD}=\widehat{EBD} (\text {tia phân giác}\)\(\widehat{BAE})\)

`=> \text {Tam giác ABD = Tam giác EBD (ch-gn)}`

`b,`

Vì Tam giác `ABD =` Tam giác `EBD (a)`

`-> BA = BE (\text {2 cạnh tương ứng})`

Xét Tam giác `BAC` và Tam giác `BEF` có:

\(\widehat{B}\) \(\text {chung}\)

`BA = BE (CMT)`

\(\widehat{BAC}=\widehat{BEF}=90^0\)

`=> \text {Tam giác BAC = Tam giác BEF (g-c-g)}`

`-> BF = BC (\text {2 cạnh tương ứng})`

Gọi `I` là giao điểm của `BD` và `CF`

Xét Tam giác `BIF` và Tam giác `BIC` có:

`BF = BC (CMT)`

\(\widehat{FBI}=\widehat{CBI} (\text {tia phân giác}\) \(\widehat{FBC})\)

\(\text {BI chung}\)

`=> \text {Tam giác BIF = Tam giác BIC (c-g-c)}`

`->`\(\widehat{BIF}=\widehat{BIC} (\text {2 góc tương ứng})\)

Mà `2` gióc này nằm ở vị trí kề bù 

`->`\(\widehat{BIF}+\widehat{BIC}=180^0\)

`->`\(\widehat{BIF}=\widehat{BIC}=\)`180/2=90^0`

`-> \text {BI} \bot \text {FC}`

`-> \text {BD}` `\bot` `\text {FC (đpcm)}`

loading...

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAE cân tại B

mà BM là phân giác

nên BM vuông góc AE tại M và M là trung điểm của AE

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=goc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBMN có

NA là trung tuýen

NI=2/3NA

=>I là trọng tâm

=>MI đi qua trung điểm của BN

26 tháng 3 2023

Cảm ơn ạ, 😍