Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5xy^2-3x^2y+6x+7y^2+1\)
\(B=13xy^2-6x^2y+3y^2+5x+5\)
=>\(A+B=18xy^2-9x^2y+11x+10y^2+6\)
\(A-B=-8xy^2+3x^2y+x+4y^2-4\)
a) Ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=2.4=8
3y=2.9=18 => y=6
4z=2.36=72 => z=18
Vậy x=8; y=6; z=18
b) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
=> x=3k; y=4k
Mà: xy=192
=> 3k.4k=192
=> 12k2=192
=> k2=16
=> k=\(\pm\)4
TH1: k=4
=> x=4.3=12; y=4.4=16
TH2: k=-4
=> x= -4.3=-12; y=-4,3.4=-16
Vậy (x;y) thõa mãn là (12;16);(-12;-16)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{62}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2.4\\y=2.3\\z=2.9\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=8\\y=6\\z=18\end{array}\right.\)
Vậy x = 8 ; y = 6 ; z = 18
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{xy}{3y}=\frac{192}{3y}\)
\(\Rightarrow\frac{y}{4}=\frac{192}{3y}\Rightarrow y.3y=192.4\)
\(\Rightarrow y^2.3=768\Rightarrow y^2=\frac{768}{3}=256\)
\(\Rightarrow y=\sqrt{256}=16;y=-\sqrt{256}=-16\)
Với y = 16 => x = \(\frac{192}{16}=12\)
Với y = -16 => x = \(\frac{192}{-16}=-12\)
Vậy x = 12 ; y = 16
hoặc x = -12 ; y = -16
a.)=(x+y)^2 mà x+y=5 =>5^2=25
b.) làm như ý a.) =5^3=125
c.)=625
d.)=3125
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
a) Ta có:
\(x+y=-1\)
\(\Rightarrow\left(x+y\right)^2=\left(-1\right)^2\)
\(\Rightarrow x^2+y^2+2xy=1\)
Thay xy = -6 vào ta được
\(x^2+y^2+2.\left(-6\right)=1\)
\(\Rightarrow x^2+y^2-12=1\)
\(\Rightarrow x^2+y^2=1+12\)
\(\Rightarrow x^2+y^2=13\)
b) Ta có:
\(x+y=17\)
\(\Rightarrow\left(x+y\right)^2=17^2\)
\(\Rightarrow x^2+y^2+2xy=289\)
Thay xy = 72 vào ta được:
\(x^2+y^2+2.72=289\)
\(\Rightarrow x^2+y^2+144=289\)
\(\Rightarrow x^2+y^2=289-144=145\)
Ta lại có:
\(\left(x-y\right)^2\)
\(=x^2+y^2-2xy\)
Thay x2 + y2 = 145 và xy = 72
\(=145-2.72\)
\(=145-144\)
\(=1\)
c) Ta có:
\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Rightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
a)\(\left(6x^2-3xy^2\right)+M=^2+y^2-2y^2\)
\(\Rightarrow M=\left(x^2+y^2-2xy^2\right)-\left(6x^2-3xy^2\right)\)
\(\Rightarrow M=x^2+y^2-2xy^2-6x^2+3xy^2\)
\(\Rightarrow M=\left(x^2-6x^2\right)+y^2+\left(-2xy^2+3xy^2\right)\)
\(\Rightarrow M=-7x^2+y^2+xy^2\)
b) \(M-\left(2xy-4y^2\right)=5xy+x^2-7y^2\)
\(\Rightarrow M=\left(5xy+x^2-7y^2\right)+\left(2xy-4y^2\right)\)
\(\Rightarrow M=5xy+x^2-7y^2+2xy-4y^2\)
\(\Rightarrow M=\left(5xy+2xy\right)+x^2+\left(-7y^2-4y^2\right)\)
\(\Rightarrow M=7xy+x^2-11y^2\)
\(\dfrac{x}{3}=\dfrac{y}{6}\Rightarrow x=\dfrac{1}{2}y\)
Ta có: \(x.y=62\)
\(\Rightarrow\dfrac{1}{2}y.y=62\)
\(\Rightarrow\dfrac{1}{2}y^2=62\)
\(\Rightarrow y^2=124\)
\(\Rightarrow y=2\sqrt{31}\)
\(\Rightarrow x=\sqrt{31}\)