K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

B3 : t chỉ m r á :3
B4 : 
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
   = 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
   = 4 ( x2 + xy + xz ) ( x+ xy + xz + yz ) + y2x2
Đặt a = x+ xy + xz và b= yz , ta có :
  ⇒ C = 4a( a + b ) + b2
          = b2 + 4ab + 4a2
          = ( b + a )2
  ⇒ C là số chính phương 
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!yeu
            

27 tháng 10 2021

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)

27 tháng 10 2021

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9\)

\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)

\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)

\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)

\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)

\(=\left(x^2-2x-3\right)^2\)

2 tháng 1 2018

Bài 1:

N = x4 - 4x3 - 2x2 + 12x + 9

= x4 + x3 - 5x3 - 5x2 + 3x2 + 3x + 9x + 9

= x3(x + 1) - 5x2(x + 1) + 3x(x + 1) + 9(x + 1)

= (x + 1)(x3 - 5x2 + 3x + 9)

= (x + 1)(x3 + x2 - 6x2 - 6x + 9x + 9)

= (x + 1)[x(x + 1) - 6x(x + 1) + 9(x + 1)]

= (x + 1)(x + 1)(x - 3)2

= (x + 1)2(x - 3)2

= [(x + 1)(x - 3)]2

Vậy N là số chính phương.

Xong tất rồi bạn nhé. Chúc bạn học tốt!

2 tháng 1 2018

Bài 2:

P = 4x(x + y)(x + y + z)(x + z) + y2z2

= [4x(x + y + z)][(x + y)(x + z)] + y2z2

= [4(x2 + xy + xz)](x2 + xy + xz + yz) + y2z2

Đặt t = x2 + xy + xz. Ta có biểu thức P theo t:

P = 4t(t + yz) + y2z2

= 4t2 + 4tyz + y2z2

= (2t + yz)2

Thay t = x2 + xy + xz vào P ta có:

P = (2t + yz)2

= [2(x2 + xy + xz) + yz]2

= (2x2 + 2xy + 2xz + yz)2

Vậy P là số chính phương.

Mình mới làm được bài 2 thôi, bài 1 mình sẽ gắng suy nghĩ.

24 tháng 8 2016

abcdacscas

13 tháng 8 2017

\(C=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\left(1\right)\)

Đặt \(a=x^2+xy+xz\)và \(b=yz\)ta có:

\(\left(1\right)\Rightarrow C=4a\left(a+b\right)+b^2=b^2+4ab+4a^2=\left(b+2a\right)^2\)

Vậy C là một số chính phương.

26 tháng 2 2017

Bạn tính toán cuối cùng nó ra M=(yz+2xz+2xy+2x2)2

x;y;z là các số tự nhiên => M là số chính phương

27 tháng 2 2017

Cảm ơn

8 tháng 11 2017

A= x4-4x3-2x2+12x+9

= x4+4x2+9-4x3-6x2+12x

= ( x2-2x-3)2

⇒ A là số chính phương

B= 4x(x+y)(x+y+z)(x+z)+y2z2

= 4(x2+xy+xz)(x2+xy+xz+yz)+y2z2

Đặt x2+xy+xz=a

⇒ 4a(a+yz)+y2z2

= 4a2+4ayz+y2z2

= (2a+yz)2

= (2x2+2xy+2xz+yz)2

⇒ B là số chính phương