K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

giúp em với ạ

 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDC}\)

Do đó:ΔADF=ΔEDC

Suy ra: AF=EC

c: Ta có:BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

hay ΔBFC cân tại B

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE và BA=BE

=>ΔADE cân tại D và BD là trung trực của AE
c: AD=DE

DE<DC

=>AD<DC

d: AH vuông góc BC

DE vuông góc BC

=>AH//DE

góc AFD=góc BFH=90 độ-góc DBC

góc ADF=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AFD=góc ADF
=>ΔADF cân tại A

a: AC=căn 10^2-5^2=5*căn 3(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

c: Sửa đề: ΔBEF=ΔBAC

Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc FBE chung

=>ΔBEF=ΔBAC

a: \(AC=\sqrt{BC^2-AB^2}=5\sqrt{3}\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

 

22 tháng 4 2017

a) tam giác ABC có: AB^2 + AC^2 = BC^2 ( pytago)

                             => BC^2 -AB^2 = AC^2

                             => .....

Pn thay số vào r tính nka

                                  

22 tháng 4 2017

giúp mình b,c,dvới

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

2 tháng 5 2017

a) Tam giác ABC vuông ( gt )

Suy ra AB^2 + AC^2 = BC^2 ( định lý PITAGO )

                      AC^2 = BC^2 - AB^2 = 10^2 - 5^2 = 75 = ( căn 75)^2

Suy ra AC = căn 75 cm

b) Xét tam giác ABD và tam giác EBD có:

BD cạnh chung

AB= EB

Suy ra tam giác ABD = EBD ( ch-gn )

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(Hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

c) Ta có: ΔABD=ΔEBD(cmt)

nên DA=DE(hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)