Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C E A B K
a,b) Xét tam giác AKC và tam giác AKB
KC=KB;KA chung; AC=AB
<=> tam giác AKC=tam giác AKB
c) \(\widehat{AKC}=\widehat{AKB}\)
Vì \(\widehat{AKC}+\widehat{AKB}=180^0\)
\(\Leftrightarrow\widehat{AKC}=\widehat{AKB}=90^0\)
\(\Rightarrow AK\perp BC\Rightarrow AK\text{//}CE\)
Vì \(CE\perp BC\left(gt\right)\)
Vậy...
K A B C E
a) Xét \(\Delta ABK\) và \(\Delta ACK\) có:
AK chung
AB = AC (gt)
KB = KC (K là trung điểm của BC(gt))
\(\Rightarrow\)\(\Delta ABK = \Delta ACK (ccc) \)
Xét \(\Delta ABC\) có: K là trung điểm BC (gt)
\(\Rightarrow\) AK là đường trung tuyến của \(\Delta ABC\) (1)
Lại có AB = AC (gt)
\(\Rightarrow\) AK là đường trung trực của \(\Delta ABC\) (2)
Từ (1)(2) \(\Rightarrow\) \(\Delta ABC\) vuông cân tại A (vì AK vừa là đường trung trực, vừa là trung tuyến)
\(\Rightarrow\)\(AK \perp BC \) tại K
b) Ta có:
\(EC \perp BC\) (gt)
\(AK \perp BC\) (cm câu a)
\(\Rightarrow\) EC // AK (Định lí 1 trong bài từ vuông góc đến song song)
b) Xét \(\Delta BCE\) có:
\(\widehat{B} + \widehat{BCE} + \widehat{E} = 180^O\) (Định lí tổng 3 góc của 1 tam giác)
\(45^O + 90^O + \widehat{C} = 180^O\)
\(\Rightarrow\)\(\widehat{C} = 45^O\)
\(\Rightarrow\) \(\Delta BCE\) vuông cân tại C
\(\Rightarrow\) CE = BC (đ/n)
Bạn ơi , trường mình lấy bài này làm đề thi học kì đấy
Bài 4 :
A B C K E
a) Xét \(\Delta AKB,\Delta AKC\) có :
\(AB=AC\) (gt)
\(AK:Chung\)
\(BK=CK\) (K là trung điểm của BC)
=> \(\Delta AKB=\Delta AKC\left(c.c.c\right)\)=> đpcm
=> \(\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)
Mà có : \(\widehat{AKB}+\widehat{AKC}=180^{^O}\left(kềbù\right)\)
Suy ra : \(\widehat{AKB}=\widehat{AKC}=\dfrac{180^{^O}}{2}=90^{^O}\)
Do đó : \(AK\perp BC\left(đpcm\right)\)
b) Ta có : \(\left\{{}\begin{matrix}EC\perp BC\left(gt\right)\left(1\right)\\AK\perp BC\left(gt\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) => \(EC\perp AK\left(\perp BC\right)\)
=> đpcm
c) Xét \(\Delta ABC\) vuông cân tại A có :
\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\) (tổng 3 góc của 1 tam giác)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{BAC}}{2}=\dfrac{180^{^O}-90^{^O}}{2}=45^o\)
Hay : \(\widehat{EBC}=45^o\)
Xét \(\Delta BEC\) có :
\(\widehat{EBC}+\widehat{BCE}+\widehat{BEC}=180^o\) (tổng 3 góc của 1 tam giác)
\(\Rightarrow45^o+90^{^O}+\widehat{BEC}=180^o\)
\(\Rightarrow\widehat{BEC}=180^o-\left(45^o+90^o\right)=45^o\)
Vậy \(\widehat{BEC}\) có số đo góc bằng 45o
a,\(\widehat{C}=180^o-90^o-\widehat{B}=90^o-30^o=60^o\)
b, Xét \(\Delta ACD-vs-\Delta MCD\)
- AC = CM (gt)
- \(\widehat{ACD}=\widehat{MCD}\) (gt)
- CD chung (gt)
=> \(\Delta ACD=\Delta MCD\left(c-g-c\right)\)
c, Ta có:
AK // CD và CK // AD => AK = CD (t/c đoạn chắn)
d, \(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACK}=90^o\\\widehat{ACD}=\widehat{CAK}=\dfrac{1}{2}\widehat{C}=30^o\left(so-le-trong\right)\end{matrix}\right.\Rightarrow\widehat{ADC}=\widehat{AKC}=180^o-90^o-30^o=60^o\)
a) Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow60^o+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ACB}=90^o-60^o=30^o\)
b) Xét \(\Delta ABH\)và \(\Delta KBH\)có:
AB = BK (gt)
BH là cạnh chung
AH = KH (H là trung điểm của AK)
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mà \(\widehat{AHB}+\widehat{KHB}=180^o\)(kề bù)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BH\)hay \(HK\perp BI\)
c)