Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F N D E
a) Ta có: AD+DE+EM=AM(ví E,D thuộc AM); AD=DE=EM(gt)=> EM=1/3.AM mà AM là đg trunh tuyến của tg ABC=> E là trọng tâm của tg ABC
Mặt khác BN là đg trung tuyến ứng cạnh AC (vì N là t/đ của Ac)=> B,E,N thẳng hàng (đpcm)
b) câu b phải là BE, AC, DF đòng quy ms đúng!
Nối N vs F và N vs D ; nối E vs C
xét tg MDF có: E là t/đ của ME (vì DE=EM) và C là t/đ của MF(vì MC=CF=BM)
=> EC là đg trung bình của tg MDF => EC//DF (1)
xét tg AEC có: D là t/đ của AE(vì AD=DE) và N là t/đ của AC (gt)
=> DN là đg trung bình của tg AEC=> DN//EC (2)
Từ (1),(2)=> D,N;F thẳng hàng (tiên đề O- clit)
Mà BE và AC cắt nhau tại N nên BE,Ac,DF đồng quy tại N
Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
A B C M D E F N
Ta có AM là đường trung tuyến , AE = 2/3 AM nên E là trọng tâm tam giác.
Vậy thì BE cắt AC tại trung điểm AC.
Ta chỉ cần chứng minh DF cũng cắt AC tại trung điểm của AC. Thật vậy:
Gọi giao điểm của DF và AC là N.
Giả sử AN = kNC.
Dùng diện tích ta có:
\(\frac{S_{ADN}}{S_{ACF}}=\frac{S_{ABC}}{3}:\frac{S_{ABC}}{2}=\frac{2}{3}\)
\(\Rightarrow3\left(S_{ADN}+S_{ANF}\right)=2\left(S_{NCF}+S_{ANF}\right)\)
\(\Rightarrow3S_{ADN}+S_{ANF}=2S_{NCF}\Rightarrow S_{ANM}+S_{ANF}=S_{MNC}+S_{NCF}\)
\(\Rightarrow kS_{MNC}+kS_{NCF}=S_{MNC}+S_{NCF}\Rightarrow k=1\)
hay AN = NC.
Vậy N là trung điểm AC.
Từ đó ta có BE, AC, DF đồng quy tại trung điểm N của AC.
Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại link trên nhé.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành