Bài 3: Cho hình thoi ABCD, gọi O là giao điểm của hai đường...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

Đây chỉ là hướng giải, ko phải bài giải nhé ^^!

a) Chứng minh theo dấu hiệu hình hình hành có 1 góc vuông là hcn

b) Cm theo DH Tứ giác có 2 cạnh đối song song và bằng nhau là hình bình hành => AB = OI (2 cạnh đối) 

c) Để OBIC là hình vuông thì OB = OC hay BD = AC <=> ABCD là hình vuông 

28 tháng 11 2017

có BI//AC gt / CI//BD BOC=90 độ (tcht) suy ra tứ giác OBIC LÀ hình chữ nhật dkpcm

có OBIC là hình chữ nhật suy ra OI=BC (tchcn)  mà BC = AB suy ra OIBAB dkpcm

hình thoi abcd cần có 1 góc vuông hình chữ nhất OIBAB là hình vuông

4 tháng 11 2018

khó đọc quá vậy

6 tháng 11 2017

A B C D O K a)Xét tứ giác OBKC, ta có:

OC//BK(BK//AC)

BO//KC(KC//BD)

=>tứ giác OBKC là hình bình hành

lại có:

AC \(\perp\) BD ( hai đường chéo)

BD//KC

=> \(\)góc OCK =90o

=> hình bình hành OBKC là hình chữ nhật

b)Ta có:

BC = OK ( do OCKD là hình chữ nhật)

AB=BC( cách cạnh hình thoi bằng nhau)

=> AB = OK

c)

* nếu tứ giác ABCD là hình vuông:

=>BD=AC

mà: BO=1/2BD

OC=1/2AC

=> BO = OC

=> hình chữ nhật OBKC là hình vuông.

Vậy HCN OBKC là hình vuông khi hình thoi ABCD là hình vuông

15 tháng 12 2021

TL:

a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD

Tương tự EG=GN suy ra MNDE là hình bình hành

15 tháng 12 2021

a) Trong tam giác ABC , có :

EA = EB ( CE là trung tuyến )

DA = DC ( DB là trung tuyến )

=> ED là đường trung bình của tam giác ABC

=> ED // BC (1) , DE = 1/2 BC (2)

Trong tam giác GBC , có :

MG = MB ( gt)

NG = NC ( gt)

=> MN là đương trung bình của tam giác GBC

=> MN // BC (3) , MN = 1/2 BC (4)

Từ 1 và 2 => ED // MN ( * )

Từ 3 và 4 => ED = MN ( **)

Từ * và ** => EDMN là hbh ( DHNB )

21 tháng 3 2020

\(\text{GIẢI :}\)

A B C M D E

a) Xét \(\diamond\text{ADME}\)\(DM\text{ }//\text{ }AB\), \(EM\text{ }//\text{ }AC\) \(\Rightarrow\text{ }\diamond\text{ADME}\) là hình bình hành.

b) Để hình bình hành ADME là hình thoi \(\Leftrightarrow\text{ }AM\) là tia phân giác của góc A.

Vậy M là giao điểm của tia phân giác góc A và cạnh BC thì ADME là hình thoi.

c) Để hình bình hành ADME là hình chữ nhật \(\Leftrightarrow\angle\text{A}=90^0\text{ }\Leftrightarrow\text{ }\bigtriangleup\text{ABC}\) vuông tại A.