Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
a)a) Vì: Am//OyAm//Oy (đề bài) nên:
Góc M1=M1= góc O1O1 (so le trong) (4)(4)
Góc xAm=xAm= góc xOyxOy (đồng vị) (1)(1)
Ta có: OtOt là phân giác góc xOyxOy (đề bài)
⇒⇒ Góc O1=O1= góc O2=O2= góc xOy/2(2)xOy/2(2)
AnAn là phân giác góc xAmxAm (đề bài)
⇒⇒ Góc nAm=nAm= góc xAm/2xAm/2 (3)(3)
Từ (1),(2),(3)⇒(1),(2),(3)⇒ Góc nAm=gócO1(5)nAm=gócO1(5)
Từ (4)(4) và (5)⇒(5)⇒ Góc nAm=nAm= góc M1M1 (vì cùng bằng góc O1O1)
Mà hai góc này ở vị trí so le trong ⇒An//Ot⇒An//Ot
b)b) Vì: góc O1=O1= góc O2O2 (OtOt là tia phân giác góc xOyxOy)
Mà góc O1=O1= góc M1M1 (chứng minh trên)
⇒⇒ Góc O2=O2= góc M1M1 (cùng bằng O1O1)
⇔ΔAOM⇔ΔAOM cân tại AA (vì có hai góc đáy bằng nhau)
Xét ΔAOMΔAOM cân tại A,A, có: AHAH là đường cao
⇒AH⇒AH là đường phân giác (trong tam giác cân đường cao vừa là đường phân giác)
Vậy tia AHAH là tia phân giác đối với góc OAmOAm
BẠN THAM KHẢO NHA!!!
O y H A t m n x
a Có: Ot là tia p/g của \(\widehat{yOA}\)
\(\Rightarrow\widehat{tOA}=\frac{1}{2}\widehat{yOA}\)
Có An là tia p/g của \(\widehat{mAx}\)
\(\Rightarrow\widehat{nAx}=\frac{1}{2}\widehat{mAx}\)
Mà Am // Oy
\(\Rightarrow\widehat{yOA}=\widehat{mAx}\)
\(\Rightarrow\widehat{tOA}=\widehat{nAx}\)
=>An//Ot
b) Nhận xét:
Tia \(AH\perp\widehat{mOA}\)
a) \(\widehat{xAm}\) = \(\widehat{xOy}\) ( hai góc đồng vị do Am // Oy )
\(\widehat{xAn}\) = \(\dfrac{1}{2}\) \(\widehat{xAm}\) ( An là phân giác của \(\widehat{xAm}\) )
\(\widehat{xOt}\) = \(\dfrac{1}{2}\) \(\widehat{xOy}\) ( Ot là phân giác của \(\widehat{xOy}\) )
\(\Rightarrow\) \(\widehat{xAn}\) = \(\widehat{xOt}\)
mà chúng ở vị trí đồng vị
\(\Rightarrow\) An // Ot
b) An // Ot
AH \(\perp\) Ot
\(\Rightarrow\) An \(\perp\) AH
\(\widehat{xAO}\) = \(\widehat{xAn}\) + \(\widehat{mAn}\) + \(\widehat{mAH}\) + \(\widehat{HAO}\) = 180\(^O\)
\(\Rightarrow\) \(\widehat{xAn}\) + \(\widehat{nAH}\) + \(\widehat{HAO}\) = 180\(^O\)
\(\Rightarrow\) \(\widehat{xAn}\) + \(\widehat{HAO}\) = 180\(^O\) - \(\widehat{nAH}\) = 180\(^O\) - 90\(^O\) = 90\(^O\)
\(\Rightarrow\) \(\widehat{xAn}\) + \(\widehat{HAO}\) = \(\widehat{mAn}\) + \(\widehat{mAH}\)
mà \(\widehat{xAn}\) = \(\widehat{mAn}\) \(\Rightarrow\) \(\widehat{HAO}\) = \(\widehat{mAH}\)
\(\Rightarrow\) AH là phân giác của \(\widehat{OAm}\)
t bắt quả tang:))