K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE ⊥ AD. Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên...
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE ⊥ AD. Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5. (3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = GD. Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

0
10 tháng 2 2018

A B C D 3cm 4cm 5cm

a) Ta có: \(AB^2+AC^2=3^2+4^2=25\Rightarrow BC^2=5^2=25\)

\(\Rightarrow AB^2+AC^2=BC^2\)(định lý đảo py-ta-go)

\(\Rightarrow\Delta ABC\)vuông tại A

b) Theo câu a, tam giác ABC vuông tại A\(\Rightarrow BA\perp DC\)

Mà AC=AD (gt)

=> BA là đường cao và đồng thời là đường trung tuyến của tam giác BCD 

=> tam giác BCD cân tại B

6 tháng 6 2020

Bài làm

a) Ta có: BC2 = 52 = 25 cm

AC2 + AB2 = 32 + 42 = 25 cm

=> BC2 = AC2 + AB2

=> Tam giác ABC vuông tại A ( theo Pytago đảo )

b) Xét tam giác BAD và tam giác BAC có:

AD = AC ( gt )

^BAD = ^BAC = 90o 

AB chung

=> Tam giác BAD = tam giác BAC ( c.g.c )

=> BD = BC ( hai cạnh tương ứng )

=> tam giác BCD cân tại B

2 tháng 4 2020

Bài làm

A B C D E O

a) Xét tam giác ABC có:

BC2 = 52 = 25

AC2 + AB2 = 32 + 42 = 25

=> BC2 = AB2 + AC2

=> Tam giác ABC vuông tại A ( theo Py-ta-go đảo )

b) Vì A là trung điểm DC ( Do AD = AC )

Mà góc BAC = 90o

=> BA là trung trực.

=> BD = BC

=> Tam giác BCD cân tại B

2 tháng 4 2020

a) Ta có: \(^{AB^2}\)+\(^{AC^2}\)=\(^{3^2}\)+\(^{4^2}\)=9+16=25=\(^{5^2}\)

\(^{^{ }BC^2}\)=\(^{5^2}\)

\(\Rightarrow\)\(^{AB^2}\)+\(^{AC^2}\)=\(^{^{ }BC^2}\)=\(^{5^2}\)

\(\Rightarrow\)\(\Delta\)ABC vuông (theo định lí Py-ta-go đảo)