K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2023

Không thấy câu a) của bạn đâu nên mình chứng minh câu b) luôn nhé.

Dễ thấy \(\widehat{BHD}=\widehat{BCA}\) vì cùng phụ với \(\widehat{HBC}\).

Lại có \(\widehat{BKD}=\widehat{BKA}=\widehat{BCA}\) nên suy ra \(\widehat{BHD}=\widehat{BKD}\) hay \(\widehat{BHK}=\widehat{BKI}\).

Mặt khác, tam giác AEH vuông tại E có trung tuyến EI nên \(EI=\dfrac{AH}{2}=IH\) \(\Rightarrow\Delta IEH\) cân tại I \(\Rightarrow\widehat{IHE}=\widehat{IEH}=\widehat{IEB}\)

Mà \(\widehat{IHE}=\widehat{BHK}=\widehat{BKI}\) \(\Rightarrow\widehat{IEB}=\widehat{IKB}\), từ đó suy ra tứ giác IEKB nội tiếp. (đpcm)

20 tháng 4 2020

Giải chi tiết:

a) Chứng minh tứ giác AEHF và BCEF nội tiếp.

Ta có ∠AEH=∠AFH=90o⇒∠AEH=∠AFH=90o⇒ E, F thuộc đường tròn đường kính AH

⇒⇒ A, E, H, F cùng thuộc một đường tròn

⇒AEHF⇒AEHF là tứ giác nội tiếp (dhnb).

Ta có ∠BEC=∠BFC=90o⇒∠BEC=∠BFC=90o⇒ BCEF  là tứ giác nội tiếp (dhnb)

b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O)(O)(D là tiếp điểm, D thuộc cung nhỏ BC). Chứng minh ID2=IB.ICID2=IB.IC.

Xét ΔIBDΔIBD và ΔIDCΔIDC có:

∠I∠I  chung

∠IDB=∠ICD∠IDB=∠ICD (ID là tiếp tuyến của (O)(O))

⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).

c) DE, DF cắt đường tròn (O)(O) tại M và N. Chứng minh NM // EF.

Xét ΔIBEΔIBE và ΔIFCΔIFC có:

∠I∠I chung

∠IEB=∠ICF∠IEB=∠ICF (BCEF  là tứ giác nội tiếp)

⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF (kết hợp b)

⇒ID2=IE.IF⇒IDIE=IFID⇒ID2=IE.IF⇒IDIE=IFID 

Xét ΔIDFΔIDF và ΔIEDΔIED có:

∠I∠I chung

 IDIE=IFID(cmt)IDIE=IFID(cmt)

⇒ΔIDF∼ΔIED⇒∠IDF=∠IED⇒ΔIDF∼ΔIED⇒∠IDF=∠IED (2 góc tương ứng)

Mặt khác ∠IDF=∠NMD∠IDF=∠NMD (ID là tiếp tuyến của (O)(O)) ⇒∠IED=∠NMD⇒∠IED=∠NMD (tc)

Mà hai góc này ở vị trí đồng vị ⇒⇒ NM // EF.

28 tháng 4 2020

Cho tam giác ABC nhọn AB

A B C

CHÚC BẠN HỌC TỐT

1: góc ABP=1/2*sđ cung AP=90 độ

=>BP//CH

góc ACP=1/2*sđ cung AP=90 độ

=>CP//BH

mà BP//CH

nên BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>M là trung điểm của HP

23 tháng 5 2018

A B C O E F H D I P Q K R M

a) Chứng minh AE.AC=AH.AD:

Xét \(\Delta\)AEH và \(\Delta\)ADC: ^AEH=^ADC(=900);  ^DAC chung => \(\Delta\)AEH ~ \(\Delta\)ADC (g.g)

\(\Rightarrow\frac{AE}{AD}=\frac{AH}{AC}\Rightarrow AE.AC=AH.AD\)(đpcm).

b) Chứng minh P;H;Q thẳng hàng:

Ta nối 2 điểm P và Q với điểm H.

Xét đường tròn (I): Có AQ là tiếp tuyến; AEC là cát tuyến => ^AQE=^ACQ

Xét \(\Delta\)AEQ và \(\Delta\)AQC: ^QAC chung;  ^AQE=^ACQ => \(\Delta\)AEQ ~ \(\Delta\)AQC (g.g)

\(\Rightarrow\frac{AQ}{AC}=\frac{AE}{AQ}\Rightarrow AQ^2=AE.AC\)

Lại có: \(AE.AC=AH.AD\Rightarrow AQ^2=AH.AD\Rightarrow\frac{AQ}{AH}=\frac{AD}{AQ}\)

Xét \(\Delta\)AHQ và \(\Delta\)AQD: ^DAQ chung; \(\frac{AQ}{AH}=\frac{AD}{AQ}\)=> \(\Delta\)AHQ ~ \(\Delta\)AQD (c.g.c)

\(\Rightarrow\)^AQH=^ADQ (1)

Ta thấy: AP và AQ là 2 tiếp tuyến của (I) => Tứ giác APIQ nội tiếp đường tròn (Tâm là trung điểm AI)

Dễ có tứ giác ADIQ nội tiếp đường tròn tâm là trung điểm AI (Do ^ADI=^AQI=900)

Từ đó suy ra: 5 điểm A;P;D;I;Q cùng thuộc 1 đường tròn => Tứ giác APDQ nội tiếp dường tròn

=> ^ADQ=^APQ (Cùng chắn cung AQ) (2)

Từ (1) và (2) => ^AQH=^APQ.  Mà \(\Delta\)PAQ cân đỉnh A => ^APQ=^AQP => ^AQH=^AQP

Dễ thấy 2 tia QH và QP nằm cùng phía so với mặt phẳng bờ là AQ 

=> P;H;Q là 2 điểm thẳng hàng (đpcm).

c) Chứng minh HP vuông với AK và KH vuông với AI:

Ở phần c) Mình sửa điểm P thành điểm R vì phần b) đã có điểm P rồi.

+) Ta có: Tứ giác BFEC nội tiếp (I) => ^ECB=^BFK hay ^KCE=^KFB

=> \(\Delta\)KBF ~ \(\Delta\)KEC (g.g) => \(\frac{KB}{KE}=\frac{KF}{KC}\Rightarrow KB.KC=KE.KF\)(3)

Xét đường tròn (O) có 2 cát tuyến KRA và KBC, ta có ngay tỉ số: \(\frac{KR}{KC}=\frac{KB}{KA}\Rightarrow KB.KC=KR.KA\)(4)

Từ (3) và (4) => \(KE.KF=KR.KA\)\(\Rightarrow\frac{KR}{KE}=\frac{KF}{KA}\)

=> \(\Delta\)KRF ~ \(\Delta\)KEA (c.g.c) => ^KRF=^KEA. Mà ^KRF+^FRA=1800 

=> ^KEA+^FRA=1800 hay ^FRA+^FEA=1800 => Tứ giác ARFE nội tiếp đường tròn.

Mà tứ giác AFHE nội tiếp đường tròn => 5 điểm A;R;F;H;E cùng thuộc 1 đường tròn

=> Tứ giác ARFH nội tiếp đường tròn => ^ARH=^AFH.

Lại có: ^AFH=900 => ^ARH=900 => HR vuông góc AR hay HR vuông góc AK (ddpcm0.

+) Gọi giao điểm của tia RH và (O) là M => ^ARM=^ARH=900

Tứ giác ARBM nội tiếp đường trong nên ^ARM=^ABM (=900)  => AB vuông góc BM

Lại thấy CF vuông góc AB => CF//BM hay CH//BM

Tứ giác ABMC nội tiếp đường tròn => ^ABM+^ACM=1800 => ^ACM=900

Tương tự ta c/m được: CM//BH

Xét tứ giác BHCM: CH//BM; CM//BH (cmt) => Tứ giác BHCM là hình bình hành

Do I là trung điểm BC nên H.I.M thẳng hàng  => R;H;I thẳng hàng và IR vuông góc AK

Xét \(\Delta\)KAI: IR vuông AK; AD vuông KI; IR cắt AD tại H => H là trực tâm của \(\Delta\)KAI

=> KH vuông góc với AI (đpcm).

d) Chứng minh BC;EF;PQ đồng quy:

 Vì EF cắt BC tại điểm K nên ta sẽ chứng minh K;P;Q là 3 điểm thẳng hàng.

Dễ có: Tứ giác APDI nội tiếp đường tròn => ^DPI=^DAI.

Mà ^DAI=^IKH (Cùng phụ góc AIK) => ^DPI=^IKH hay ^DPI=^DKP

Xét \(\Delta\)KPD: ^DKP + ^KDP+^KPD = 1800 => ^DPI + ^KDP + ^KPD = 1800

=> ^KPI + ^KDP = 1800 (5)

Để ý rằng tứ giác PDIQ nội tiếp đường tròn => ^IQP=^KDP.

Mà \(\Delta\)PIQ cân đỉnh I => ^IQP=^IPQ => ^KDP=^IPQ (6)

Từ (5) và (6) => ^KPI + ^IPQ = 1800 => ^KPQ = 1800 => 3 điểm K;P;Q thẳng hàng.

Qua đó, ta suy ra được BC;EF;PQ đồng quy (đpcm).

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và ea) chứng minh tứ giác bdmc, adhm...
Đọc tiếp

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

0