K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2023

Không thấy câu a) của bạn đâu nên mình chứng minh câu b) luôn nhé.

Dễ thấy \(\widehat{BHD}=\widehat{BCA}\) vì cùng phụ với \(\widehat{HBC}\).

Lại có \(\widehat{BKD}=\widehat{BKA}=\widehat{BCA}\) nên suy ra \(\widehat{BHD}=\widehat{BKD}\) hay \(\widehat{BHK}=\widehat{BKI}\).

Mặt khác, tam giác AEH vuông tại E có trung tuyến EI nên \(EI=\dfrac{AH}{2}=IH\) \(\Rightarrow\Delta IEH\) cân tại I \(\Rightarrow\widehat{IHE}=\widehat{IEH}=\widehat{IEB}\)

Mà \(\widehat{IHE}=\widehat{BHK}=\widehat{BKI}\) \(\Rightarrow\widehat{IEB}=\widehat{IKB}\), từ đó suy ra tứ giác IEKB nội tiếp. (đpcm)

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và ea) chứng minh tứ giác bdmc, adhm...
Đọc tiếp

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

0
18 tháng 2 2020

ngu vcl

18 tháng 2 2020

câu a) bạn sử dụng tính chất của 3 đường cao là được.

b) bạn chứng minh là tam giác ABK là tam giác vuông do chắn nửa đường tròn

sau đó xét hai tam giác vuông ACD và AKB sao cho đồng dạng : có \(\widehat{ACD}=\widehat{AKB}\)do cùng chắn cung AB

sau đó bạn suy ra tỷ số đồng dạng rồi nhân chéo là xong.

c)

bạn xét hai tam giác MAB vad MCK  sao cho đồng dạng  do

hai góc M bằng nhau do đối đỉnh 

 góc MKC= góc MBA cùng chắn cung AC

rồi suy ra  2 tam giác đó dồng dạng rồi suy ra tỉ số đồng dạng rồi nhân chéo 

d  câu này ta có \(\hept{\begin{cases}CF\perp AB\\KB\perp AB\end{cases}\Rightarrow CF//KB\Leftrightarrow CH//KB}\)

\(\hept{\begin{cases}BE\perp AC\\KC\perp AC\end{cases}\Rightarrow BE//CK\Leftrightarrow BH//CK}\)

TỪ 2 ĐIỀU TRÊN ta suy ra được tứ giác CHBK LÀ HÌNH BÌNH HÀNH 

TỪ ĐIỀU ĐÓ SUY RA  I là giao diểm của hai đường chéo suy ra i là trung điểm của HK suy ra H,I,K thằng hàng

23 tháng 5 2018

A B C O E F H D I P Q K R M

a) Chứng minh AE.AC=AH.AD:

Xét \(\Delta\)AEH và \(\Delta\)ADC: ^AEH=^ADC(=900);  ^DAC chung => \(\Delta\)AEH ~ \(\Delta\)ADC (g.g)

\(\Rightarrow\frac{AE}{AD}=\frac{AH}{AC}\Rightarrow AE.AC=AH.AD\)(đpcm).

b) Chứng minh P;H;Q thẳng hàng:

Ta nối 2 điểm P và Q với điểm H.

Xét đường tròn (I): Có AQ là tiếp tuyến; AEC là cát tuyến => ^AQE=^ACQ

Xét \(\Delta\)AEQ và \(\Delta\)AQC: ^QAC chung;  ^AQE=^ACQ => \(\Delta\)AEQ ~ \(\Delta\)AQC (g.g)

\(\Rightarrow\frac{AQ}{AC}=\frac{AE}{AQ}\Rightarrow AQ^2=AE.AC\)

Lại có: \(AE.AC=AH.AD\Rightarrow AQ^2=AH.AD\Rightarrow\frac{AQ}{AH}=\frac{AD}{AQ}\)

Xét \(\Delta\)AHQ và \(\Delta\)AQD: ^DAQ chung; \(\frac{AQ}{AH}=\frac{AD}{AQ}\)=> \(\Delta\)AHQ ~ \(\Delta\)AQD (c.g.c)

\(\Rightarrow\)^AQH=^ADQ (1)

Ta thấy: AP và AQ là 2 tiếp tuyến của (I) => Tứ giác APIQ nội tiếp đường tròn (Tâm là trung điểm AI)

Dễ có tứ giác ADIQ nội tiếp đường tròn tâm là trung điểm AI (Do ^ADI=^AQI=900)

Từ đó suy ra: 5 điểm A;P;D;I;Q cùng thuộc 1 đường tròn => Tứ giác APDQ nội tiếp dường tròn

=> ^ADQ=^APQ (Cùng chắn cung AQ) (2)

Từ (1) và (2) => ^AQH=^APQ.  Mà \(\Delta\)PAQ cân đỉnh A => ^APQ=^AQP => ^AQH=^AQP

Dễ thấy 2 tia QH và QP nằm cùng phía so với mặt phẳng bờ là AQ 

=> P;H;Q là 2 điểm thẳng hàng (đpcm).

c) Chứng minh HP vuông với AK và KH vuông với AI:

Ở phần c) Mình sửa điểm P thành điểm R vì phần b) đã có điểm P rồi.

+) Ta có: Tứ giác BFEC nội tiếp (I) => ^ECB=^BFK hay ^KCE=^KFB

=> \(\Delta\)KBF ~ \(\Delta\)KEC (g.g) => \(\frac{KB}{KE}=\frac{KF}{KC}\Rightarrow KB.KC=KE.KF\)(3)

Xét đường tròn (O) có 2 cát tuyến KRA và KBC, ta có ngay tỉ số: \(\frac{KR}{KC}=\frac{KB}{KA}\Rightarrow KB.KC=KR.KA\)(4)

Từ (3) và (4) => \(KE.KF=KR.KA\)\(\Rightarrow\frac{KR}{KE}=\frac{KF}{KA}\)

=> \(\Delta\)KRF ~ \(\Delta\)KEA (c.g.c) => ^KRF=^KEA. Mà ^KRF+^FRA=1800 

=> ^KEA+^FRA=1800 hay ^FRA+^FEA=1800 => Tứ giác ARFE nội tiếp đường tròn.

Mà tứ giác AFHE nội tiếp đường tròn => 5 điểm A;R;F;H;E cùng thuộc 1 đường tròn

=> Tứ giác ARFH nội tiếp đường tròn => ^ARH=^AFH.

Lại có: ^AFH=900 => ^ARH=900 => HR vuông góc AR hay HR vuông góc AK (ddpcm0.

+) Gọi giao điểm của tia RH và (O) là M => ^ARM=^ARH=900

Tứ giác ARBM nội tiếp đường trong nên ^ARM=^ABM (=900)  => AB vuông góc BM

Lại thấy CF vuông góc AB => CF//BM hay CH//BM

Tứ giác ABMC nội tiếp đường tròn => ^ABM+^ACM=1800 => ^ACM=900

Tương tự ta c/m được: CM//BH

Xét tứ giác BHCM: CH//BM; CM//BH (cmt) => Tứ giác BHCM là hình bình hành

Do I là trung điểm BC nên H.I.M thẳng hàng  => R;H;I thẳng hàng và IR vuông góc AK

Xét \(\Delta\)KAI: IR vuông AK; AD vuông KI; IR cắt AD tại H => H là trực tâm của \(\Delta\)KAI

=> KH vuông góc với AI (đpcm).

d) Chứng minh BC;EF;PQ đồng quy:

 Vì EF cắt BC tại điểm K nên ta sẽ chứng minh K;P;Q là 3 điểm thẳng hàng.

Dễ có: Tứ giác APDI nội tiếp đường tròn => ^DPI=^DAI.

Mà ^DAI=^IKH (Cùng phụ góc AIK) => ^DPI=^IKH hay ^DPI=^DKP

Xét \(\Delta\)KPD: ^DKP + ^KDP+^KPD = 1800 => ^DPI + ^KDP + ^KPD = 1800

=> ^KPI + ^KDP = 1800 (5)

Để ý rằng tứ giác PDIQ nội tiếp đường tròn => ^IQP=^KDP.

Mà \(\Delta\)PIQ cân đỉnh I => ^IQP=^IPQ => ^KDP=^IPQ (6)

Từ (5) và (6) => ^KPI + ^IPQ = 1800 => ^KPQ = 1800 => 3 điểm K;P;Q thẳng hàng.

Qua đó, ta suy ra được BC;EF;PQ đồng quy (đpcm).

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

20 tháng 4 2020

Giải chi tiết:

a) Chứng minh tứ giác AEHF và BCEF nội tiếp.

Ta có ∠AEH=∠AFH=90o⇒∠AEH=∠AFH=90o⇒ E, F thuộc đường tròn đường kính AH

⇒⇒ A, E, H, F cùng thuộc một đường tròn

⇒AEHF⇒AEHF là tứ giác nội tiếp (dhnb).

Ta có ∠BEC=∠BFC=90o⇒∠BEC=∠BFC=90o⇒ BCEF  là tứ giác nội tiếp (dhnb)

b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O)(O)(D là tiếp điểm, D thuộc cung nhỏ BC). Chứng minh ID2=IB.ICID2=IB.IC.

Xét ΔIBDΔIBD và ΔIDCΔIDC có:

∠I∠I  chung

∠IDB=∠ICD∠IDB=∠ICD (ID là tiếp tuyến của (O)(O))

⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).

c) DE, DF cắt đường tròn (O)(O) tại M và N. Chứng minh NM // EF.

Xét ΔIBEΔIBE và ΔIFCΔIFC có:

∠I∠I chung

∠IEB=∠ICF∠IEB=∠ICF (BCEF  là tứ giác nội tiếp)

⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF (kết hợp b)

⇒ID2=IE.IF⇒IDIE=IFID⇒ID2=IE.IF⇒IDIE=IFID 

Xét ΔIDFΔIDF và ΔIEDΔIED có:

∠I∠I chung

 IDIE=IFID(cmt)IDIE=IFID(cmt)

⇒ΔIDF∼ΔIED⇒∠IDF=∠IED⇒ΔIDF∼ΔIED⇒∠IDF=∠IED (2 góc tương ứng)

Mặt khác ∠IDF=∠NMD∠IDF=∠NMD (ID là tiếp tuyến của (O)(O)) ⇒∠IED=∠NMD⇒∠IED=∠NMD (tc)

Mà hai góc này ở vị trí đồng vị ⇒⇒ NM // EF.

28 tháng 4 2020

Cho tam giác ABC nhọn AB

A B C

CHÚC BẠN HỌC TỐT

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu