Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{\sqrt{\dfrac{5}{7}}+\sqrt{\dfrac{5}{13}}+1}+\dfrac{1}{\sqrt{\dfrac{7}{13}}+\sqrt{\dfrac{7}{5}}+1}+\dfrac{1}{\sqrt{1\dfrac{6}{7}}+\sqrt{2\dfrac{3}{5}}+1}\\ =\dfrac{1}{\dfrac{\sqrt{5}}{\sqrt{7}}+\dfrac{\sqrt{5}}{\sqrt{13}}+\dfrac{\sqrt{5}}{\sqrt{5}}}+\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{13}}+\dfrac{\sqrt{7}}{\sqrt{5}}+\dfrac{\sqrt{7}}{\sqrt{7}}}+\dfrac{1}{\dfrac{\sqrt{13}}{\sqrt{7}}+\dfrac{\sqrt{13}}{\sqrt{5}}+\dfrac{\sqrt{13}}{\sqrt{13}}}\\ =\left(\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{7}}+\dfrac{1}{\sqrt{13}}\right)\cdot\dfrac{1}{\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{7}}+\dfrac{1}{\sqrt{13}}}\\ =1\)
a: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
c: Ta có: \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-3\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{4}{3}\end{matrix}\right.\)
bạn giải thích giúp mình bước 1 mấy bước sau mình sẽ tham khảo thêm cảm ơn nhiều 🙏
b,\(\sqrt{\left(3x-2\right)^2}=4\)
\(\Leftrightarrow3x-2=4\)
\(\Leftrightarrow3x=6\Leftrightarrow x=2\)
vậy......
c,\(\dfrac{2\sqrt{x}-19}{4-\sqrt{x}}=\dfrac{1}{5}\) ĐKXĐ: x <16
\(\Rightarrow2\sqrt{x}-19=\dfrac{1}{5}\left(4-\sqrt{x}\right)\)
\(\Leftrightarrow2\sqrt{x}-19=\dfrac{4}{5}-\dfrac{1}{5}\sqrt{x}\)
\(\Leftrightarrow\dfrac{11}{5}\sqrt{x}=\dfrac{99}{5}\)
\(\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\left(KTMĐK\right)\)
vậy........
a/ ĐKXĐ: \(x\ge2\)
\(2\sqrt{4x-8}-\sqrt{9x-18}+\sqrt{36x-72}=14\)
\(\Leftrightarrow4\sqrt{x-2}-3\sqrt{x-2}+6\sqrt{x-2}=14\)
\(\Leftrightarrow7\sqrt{x-2}=14\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\) ( tmđk)
Vậy phương trình đã cho có nghiệm x=6
a.
Đặt \(x+2y+1=a\)
\(\Rightarrow P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)
\(P_{min}=8\) khi \(a=-2\) hay \(x+2y+3=0\)
b.
\(\sqrt{x}-1=a\ge0\Rightarrow\sqrt{x}=a+1\Rightarrow x=a^2+2a+1\)
\(Q=\dfrac{\left(a^2+2a+1\right)+\left(a+1\right)+1}{a}=\dfrac{a^2+3a+3}{a}=a+\dfrac{3}{a}+3\ge2\sqrt{\dfrac{3a}{a}}+3=3+2\sqrt{3}\)
\(Q_{min}=3+2\sqrt{3}\) khi \(a=\sqrt{3}\) hay \(x=4+2\sqrt{3}\)
Bài 1 :
1, Thay x = 36 vào A ta được : \(A=\dfrac{4\sqrt{36}+1}{\sqrt{36}+3}=\dfrac{25}{9}\)
2, Với \(x\ge0;x\ne9\)
\(B=\dfrac{x-\sqrt{x}+12}{x-9}-\dfrac{3}{\sqrt{x}-3}=\dfrac{x-\sqrt{x}+12-3\left(\sqrt{x}+3\right)}{x-9}\)
\(=\dfrac{x-4\sqrt{x}+3}{x-9}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
3, \(B< \dfrac{1}{5}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-\dfrac{1}{5}< 0\Leftrightarrow\dfrac{5\sqrt{x}-5-\sqrt{x}-3}{5\left(\sqrt{x}+3\right)}< 0\)
\(\Rightarrow4\sqrt{x}-8< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)
Kết hợp với đk vậy 0 =< x < 4
4, \(M=A:B=\dfrac{4\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{4\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=4+\dfrac{5}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
x | 4 | 0 | 36 | loại |
c: Ta có: \(\sqrt{25x-50}+2\cdot\sqrt{\dfrac{49x-98}{4}}=6\)
\(\Leftrightarrow5\sqrt{x-2}+7\sqrt{x-2}=6\)
\(\Leftrightarrow12\sqrt{x-2}=6\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)