K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bài 3:
Xét ΔBAC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)
Hình thang EDCB có
M là trung điểm của EB
N là trung điểm của DC
Do đó: MN là đường trung bình của hình thang EDCB
Suy ra: MN//ED//BC và \(MN=\dfrac{ED+BC}{2}\)
\(\Leftrightarrow MN=\left(\dfrac{1}{2}BC+BC\right):2=\dfrac{3}{4}BC\)
Xét ΔEBD có
M là trung điểm của EB
MI//ED
Do đó: I là trung điểm của BD
Xét ΔBED có
M là trung điểm của EB
I là trung điểm của BD
Do đó: MI là đường trung bình của ΔBED
Suy ra: \(MI=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(1\right)\)
Xét ΔECD có
N là trung điểm của DC
NK//ED
Do đó: K là trung điểm của EC
Xét ΔECD có
N là trung điểm của DC
K là trung điểm của EC
Do đó: NK là đường trung bình của ΔECD
Suy ra: \(NK=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(2\right)\)
Ta có: MI+IK+KN=MN
nên \(IK=\dfrac{1}{4}BC\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra MI=IK=KN