K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2023

D F E M K O H N

a) Tứ giác ���� có �^=�^=�^=90∘ nên là hình chữ nhật.

b) Vì ���� là hình chữ nhật nên �� // ��.

Xét Δ��� và Δ��� có:

     �^=�^=90∘

     ��=�� (giả thiết)

     ���^=�^ (đồng vị)

Suy ra Δ���=Δ��� (cạnh huyền - góc nhọn)

Suy ra ��=�� (hai cạnh tương ứng) mà ��=�� nên ��=2�� và ��=2��.

Do đó ��=��.

Tứ giác ���� có �� // ��,DF=MH$ nên là hình bình hành.

Nên hai đường chéo ��,�� cắt nhau tại trung điểm  của mỗi đường hay �,�,� thẳng hàng.

c) Để hình chữ nhật ���� là hình vuông thì ��=�� (1)

Mà ��=12�� và ��=��=�� nên ��=12�� (2)

Từ (1) và (2) suy ra ��=�� nên Δ��� cân tại .

21 tháng 11 2023

a) Tứ giác ���� có �^=�^=�^=90∘ nên là hình chữ nhật.

b) Vì ���� là hình chữ nhật nên �� // ��

Xét Δ��� và Δ��� có:

     �^=�^=90∘

     ��=�� ( giả thiết)

     ���^=�^ (đồng vị)

Vậy Δ���=Δ��� (cạnh huyền - góc nhọn)

Suy ra ��=�� (hai cạnh tương ứng) mà ��=�� nên ��=2�� và ��=2��.

Do đó ��=��.

Tứ giác ���� có �� // ��,��=�� nên là hình bình hành.

Do đó, hai đường chéo ��,�� cắt nhau tại trung điểm  của mỗi đường hay �,�,� thẳng hàng.

c) Để hình chữ nhật ���� là hình vuông thì ��=�� (1)

Mà ��=12�� và ��=��=�� nên ��=12�� (2)

Từ (1),(2) suy ra ��=��.

Vậy Δ��� cần thêm điều kiên cân tại .

21 tháng 11 2023

a) Tứ giác DKMN có 3 góc D=K=N= 90 độ

=> Tg DKMN là hình chữ nhật

Vậy tg DKMN là hình chữ nhật

b) Vì DKMN là hình chữ nhật nên DF//MH 

Xét 2 tam giác KFM và NME có:

góc K= góc N = 90 độ

FM=ME(gt)

góc KMF = góc E( đồng vị)

=> Tam giác KFM = tam giác NME (cạnh huyền-góc nhọn)

=>KF=MN( hai cạnh tương ứng) mà MN=DK nên DF=2DK và MH=2MN

Do đó DF=MH

Tứ gáic DFMH có DF//MH, DF=MH nên là hình bình hành

Do đó hai đường chéo DM,FH cắt nhau tại trung điểm O của mỗi đường hay F,O,H thẳng hàng

Vậy 3 điểm F,O,H thẳng hàng

c) Để hình chữ nhật DKMN là hình vuông thì DK=DN(1)

Mà DK=1/2DF và DN=KM=NE nên DN=1/2DE(2)

Từ (1),(2) suy ra DF=DE

Vậy tam giác DFE cần thêm điều kiện cân tại D

Vậy��=

11 tháng 12 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2+EF^2\)

=>\(EF^2=9^2+12^2=225\)

=>\(EF=\sqrt{225}=15\left(cm\right)\)

Ta có; ΔDEF vuông tại D

mà DM là đường trung tuyến

nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)

b: Xét tứ giác DNMK có

\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)

=>DNMK là hình chữ nhật

c: Xét ΔDEF có MN//DF

nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)

=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)

mà \(MN=\dfrac{1}{2}MH\)

nên MH=DF

Ta có: MN//DF

N\(\in\)MH

Do đó: MH//DF

Xét tứ giác DHMF có

MH//DF

MH=DF

Do đó: DHMF là hình bình hành

=>DM cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của DM

nên O là trung điểm của HF

=>H,O,F thẳng hàng

11 tháng 11 2017

a)Xét tứ giác AMDN có: góc AMD=900

góc MAN=900

góc DNA=900

=> Tứ giác AMDN là hình chữ nhật(dhnb hcn)

b)Xét tam giác ABC vuông tại A có:D là trung điểm của BC

=>AD là đường trung tuyến ứng với cạnh huyền BC

=>AD=BD=CD=BC/2

=> tg ACD cân tại D

Xét tg ACD cân tại D có: DN là đường cao

=>DN là đường trung tuyến của tam giác ADC

=>N là trung điểm của AC

25 tháng 11 2019

a ) Xét ◇DENF có :

Góc N = Góc F = Ê = 90°

\(\Rightarrow\)◇DENF là hình chữ nhật

b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến 

\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )

Xét \(\Delta\)NDF và \(\Delta\)PDF có :

  • ND = DP ( cmt )
  • Góc NFD = Góc PFD ( = 90° )
  • DF : cạnh chung

\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )

\(\Rightarrow\)F là trung điểm NP

25 tháng 11 2019

a) Xét tứ giác NEDF có +)  \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)

+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)

+)  \(\widehat{DEN}=90^0\)(DE vuông góc MN)

\(\Rightarrow\)tứ giác NEDF là hình chữ nhật

b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:

   DF : cạnh chung

   DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)

Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)

\(\Rightarrow NF=PF\)

Suy ra F là trung điểm của NP (đpcm)

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0
17 tháng 11 2023

a: Xét tứ giác AKMH có

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

=>AKMH là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MK//AC

Do đó: K là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MH//AB

Do đó: H là trung điểm của AC

Xét ΔABC có

M,K lần lượt là trung điểm của BC,BA

=>MK là đường trung bình cuả ΔABC

=>MK//AC và MK=AC/2

MK=AC/2

MK=MI/2

Do đó: AC=MI

Xét tứ giác ACMI có

MI//AC

MI=AC

Do đó: ACMI là hình bình hành

=>AM cắt CI tại trung điểm của mỗi đường

mà E là trung điểm của AM

nên E là trung điểm của CI

=>E,C,I thẳng hàng

c: Hình chữ nhật AKMH trở thành hình vuông khi AK=AH

mà \(AK=\dfrac{AB}{2}\) và \(AH=\dfrac{AC}{2}\)

nên AB=AC

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

22 tháng 11 2016

a) ta có góc DMA=MAN=DAN=900

=> tứ giác AMDN là hình chữ nhật

b) ta có DB=DC VÀ DN // MA ( do MDNA là hình chữ nhật )

=> DN là đường trung bình của tam giác ABC

--> AN=NC hay N là trung điểm của AC

c) ta có tứ giác ADCE có 2 đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Hình bình hành ADCE có 2 đường chéo vuông góc với nhau nên là hình thoi

d)

11 tháng 11 2017

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A

24 tháng 12 2018

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A