Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3
\(3-\left(x-1\right)=2-2\left(x-3\right)\)
\(3-x+1=2-2x+6\)
\(4-x=8-2x\)
\(4-x-8+2x=0\)
\(x-4=0\)
\(x=4\)
3-(x-1)=2-2(x-3)=>3-2=x-1-2(x-3)=>1=x-1-2x+6
=>1=-x+5=>-x=1-5=-4=>x=4
Chúc bạn học tốt nhớ k cho mik nha.
Theo đề bài ta có :
\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)
=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)
=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)
=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)
=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)
=> \(3x^3+5x-5x^2-x^4-2=0\)
=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)
=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)
=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)
=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)
=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)
=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)
=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)
=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)
Ta Thấy :
\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)
=> x = 1
ĐKXĐ: x khác -2;-1;0;1.
\(\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{3x-3}=\frac{1}{5x}\)
\((\frac{1}{x+1}-\frac{1}{5x})+(\frac{1}{x+2}+\frac{1}{3x-3})=0\)
\(\frac{4x-1}{5x(x+1)}+\frac{4x-1}{(x+2)(3x-3)}=0\)
hoặc \(4x-1=0\) hoặc \(5x(x+1)=(x+2)(3x-3)\)
Phương trình thứ nhất có nghiệm x=0,25 (t/m đkxđ)
Phương trình thứ 2 vô nghiệm.
Vậy pt có tập nghiệm S={0,25}.
Chúc bạn học tốt!
6x2 - (2x - 3)(3x + 2) = 1
<=> 6x2 - (6x2 - 5x - 6) = 1
<=> 5x + 6 = 1
=> 5x = -5
=> x = -1
Vậy x = -1
b) (x + 1)3 - (x - 1)(x2 + x + 1) - 2 = 0
<=> x3 + 3x2 + 3x + 1 - (x3 - 1) - 2 = 0
<=> 3x2 + 3x = 0
<=> 3x(x + 1) = 0
<=> x(x + 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(x\in\left\{0;-1\right\}\)