Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh dự tuyển của trường là (học sinh) ()
Số học sinh dự tuyển của trường là (học sinh) ()
Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: (1)
Số học sinh trúng tuyển của trường là: (học sinh)
Số học sinh trúng tuyển của trường là: (học sinh)
Vì tổng số học sinh trúng tuyển của cả hai trường là học sinh nên ta có phương trình
(2)
Từ (1) và (2) ta có hệ phương trình
Vậy số học sinh dự thi của trường là học sinh
Số học sinh dự thi của trường là học sinh.
1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )
Vận tốc của xe 2 = x - 10 (km/h)
Thời gian xe 1 đi hết quãng đường AB = 160/x (km)
Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)
Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :
\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)
<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)
=> 4x( x - 10 ) = 8000
<=> x2 - 10x - 2000 = 0 (*)
Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)
Vậy vận tốc của xe 2 là 40km/h
gọi vận tốc của xe thứ hai là x (km/h)
⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)
vận tốc của xe thứ nhất là x+10 (km/h) (x>0)
⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)
vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:
\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)
⇔\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0
Δ=40\(^2\)-4.4.(-8000)=129600>0
⇒pt có hai nghiệm pb
x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)
x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)
vậy vận tốc của xe thứ hai là 40 km/h
Tổng số h/s dự thi của cả 2 trường là 420:84%=500 (h/s)
Gọi số h/s dự thi của trường A và B lần lượt là a,b (h/s) (a,b nguyên dương và 0<a,b<500)
=> a+b=500
Tỉ lệ đỗ của trường A là 80% nên số h/s thi đỗ của trường A là 80%.a=8/10.a
Tương tự số h/s thi đỗ của trường B là 9/10.b
Mà 2 trường có 420 h/s đỗ => 8/10.a+9/10.b=420
Giải hệ \(\hept{\begin{cases}a+b=500\\\frac{8}{10}a+\frac{9}{10}b=420\end{cases}}\)được a=300,b=200
x là sô học sinh dự thi trường A
số học sinh dự thi cả 2 trường 420:84%=500
SHS thi đỗ của A:80%x
SHS thi đỗ của B: (500-x)90%
PT: 80%+(500-x)90%=420
A=300, B=200
Gọi x, y (học sinh) lần lượt là số học sinh dự thi vào lớp 10 của trườn A và Trường B ( x,y thuộc N*).
Vì có 210 học sinh thi đậu vào lớp 10 đat tỉ lệ 84% nên: (x+y).84%=210
<=> x + y = 250 (1).
Vì số học sinh đậu vào trường A Và B lần lượt là 80% và 90% nên: 0,8x + 0,9y= 210 (2).
Từ 1 và 2 ta có hpt:
x + y= 250
0,8x + 0,9y= 210
X= 150 hs
Y= 100 hs
Vậy có 150hs thi vào trường A và 100 hs thi vào trường B.
Số hs thi đậu vào trường A là: 150.80%= 120hs
Số hs thi đậu vào trường B là:
100.90%=90 hs.
Cách 1
Gọi số học sinh trường A là x ; số học sinh trường B là y ( x, y ∈ N ; x,y < 420 )
Theo bài ra ta có hpt : \(\left\{{}\begin{matrix}x+y=420\\\dfrac{4}{5}x+\dfrac{9}{10}y=352,8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=252\\y=168\end{matrix}\right.\)(tm)
Vậy ...
Cách 2
Gọi số học sinh trường A là x ( x ∈ N | 0 < x < 420 )
=> Số học sinh trường y là 420 - x
Theo bài ra ta có phương trình :
4/5x + 378 - 9/10x = 352,8
<=> x = 252 (tm)
Vậy ...
số hs hai trường là ; a,b (a,b€N)
84%(a+b)=21080%a+90%b=210
<=>21a+21b=25.210
8a+9b=10.210
(21.8-9.21)b=(25.8-10.21).210
b=2.10(5.21-4.25)=2.10.5=100
21a=25.210-21.100=210(25-10).=15.210
a=150
trường A có 150 hs thi
trường B có 100 hs thi
Gọi x,y lần lượt số sinh lần lượt của trường THCS A và THCS B (x,y>0) (Học sinh)
Vì tổng số học sinh là 500: x+y=500 (1)
Mặt khác, với các thông tin về số học sinh đỗ, ta có hpt:
90% x + 80% y = 84%. 500
<=> 0,9x + 0,8y = 420 (2)
Từ (1), (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=500\\0,9x+0,8y=420\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=200\left(TM\right)\\y=300\left(TM\right)\end{matrix}\right.\)
Trường THCS A có số học sinh đỗ là: 200 x 90%= 180 (học sinh)
Số học sinh đỗ vào 10 của trường THCS B là: 300 x 80%= 240(học sinh)
Gọi số học sinh dự thi của trường A là : x ( học sinh ) ( x \(\in\) N* ; x < 250 )
=> Số học sinh dự thi trường B là : 250 - x ( học sinh )
+) Số học sinh đậu của trường A là : 80%x (hs)
+) Số học sinh đậu trường B là : 90%(250-x) (hs)
Theo bài ra, ta có :
80%x + 90%(250-x)=210
<=> \(\dfrac{4}{5}x+225-\dfrac{9}{10}x=210\)
<=> \(-\dfrac{1}{10}x=-15\)
<=> x = 150 (TM)
Vậy số hs dự thi trường A là : 150hs ; trường B là : 250 - 150 = 100 (hs)