Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(0,25)^4 . 1024 = (0,25)^4 . 2^10 = (0,25)^4 . 2^4 . 2^6 = (0,25 . 2)^4 . 2^6 = (0,5)^4 . 2^4. 2^2 = (0,5 . 2)^4 . 2^2 = 1^4 . 2^2 = 1 . 4 = 4
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
Bài 1 :
\(A=1\cdot2+2\cdot3+3\cdot4+...+n\cdot\left(n+1\right)\)
\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+n\cdot\left(n+1\right)\cdot3\)
\(=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\cdot\left(n+1\right)\cdot\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+2\cdot3\cdot4-3\cdot4\cdot5+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bài 1.
A = 1.2 + 2.3 + 3.4 + ... + n.(n + 1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n + 1).3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1).(n + 2 - n - 1)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n + 1).(n + 2 ) - (n - 1).n.(n + 1)
3A = n.(n + 1).(n + 2)
A = n.(n + 1).(n + 2) : 3
Bài 2.
B = 1.2.3 + 2.3.4 + ... + (n - 1).n.(n + 1)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1).n.(n + 1).4
4B = 1.2.3.4 + 2.3.4.(5 - 1) + .... + (n - 1).n.(n + 1).(n + 2 - n - 2)
4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1).n.(n + 1).(n + 2) - (n - 2).(n - 1).n.(n + 1)
4B = (n - 1).n.(n + 1).(n + 2)
B = (n - 1).n.(n + 1).(n + 2) : 4
Xong rồi nhé anh !
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a: Ta có: \(A=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2009\cdot2011}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2010}{2011}=\dfrac{1005}{2011}\)
b: Ta có: \(B=\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)+...+\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=\dfrac{101}{2}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2007.2009}+\dfrac{1}{2009.2011}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right)\)
\(=\dfrac{1005}{2011}\)
các bạn trả lời bài 1 cũng được trả lời xong thì báo cho mình để mình k nha
bai 1
a,17.64+68.34=34.32+68.34=34.(68+32)=34.100=3400
b,37.63+64.163=37.63+63.163+163=63(37+60)+163=63.100+163=6300+163=6463
c,163.68+16.272=136.68+32.136=136(68+32)=136.100=13600
d,26.13+74.14=26.13+74.13+74=13.(74+26)+74=13.100+74=1300+74=1374