K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

a) Biến cố “ Chọn được số chia hết cho 5” là biến cố không thể ( do trong các số đã cho không có số nào chia hết cho 5) nên xác suất chọn được số chia hết cho 5 là 0.

b) Biến cố: “ Chọn được số có hai chữ số” là biến cố chắc chắn ( do tất cả các số đã cho đều là số có 2 chữ số) nên xác suất chọn được số có hai chữ số là 1.

c) Xét 2 biến cố: “ Chọn được số nguyên tố” và “ Chọn được hợp số”

2 biến cố này là 2 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 2 biến cố đó

Xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)

Vậy xác suất để chọn được số nguyên tố là \(\dfrac{1}{2}\)

d) Trong 4 số trên chỉ có số 12 là số chia hết cho 6.

Xét 4 biến cố: “Chọn được số 11”; “Chọn được số 12”; “Chọn được số 13”; “Chọn được số 14”

4 biến cố này là 4 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 4 biến cố đó

Xác suất của mỗi biến cố đó là \(\dfrac{1}{4}\)

17 tháng 4 2023

Trong bốn số 11;13;15 và 17 thì không có số nào chia hết cho 2 nên xác suất chọn được số chia hết cho 2 là: \(0\)
Trong bốn số 11;13;15 và 17 thì cả bốn số này đều là số có hai chữ số nên xác suất chọn được số có hai chữ số là: \(\dfrac{4}{4}=1\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Biến cố “ Chọn được số chia hết cho 5” là biến cố không thể ( do trong các số đã cho không có số nào chia hết cho 5) nên xác suất chọn được số chia hết cho 5 là 0.

b) Biến cố: “ Chọn được số có hai chữ số” là biến cố chắc chắn ( do tất cả các số đã cho đều là số có 2 chữ số) nên xác suất chọn được số có hai chữ số là 1.

c) Xét 2 biến cố: “ Chọn được số nguyên tố” và “ Chọn được hợp số”

2 biến cố này là 2 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 2 biến cố đó

Xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)

Vậy xác suất để chọn được số nguyên tố là \(\dfrac{1}{2}\)

d) Trong 4 số trên chỉ có số 12 là số chia hết cho 6.

Xét 4 biến cố: “Chọn được số 11”; “Chọn được số 12”; “Chọn được số 13”; “Chọn được số 14”

4 biến cố này là 4 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 4 biến cố đó

Xác suất của mỗi biến cố đó là \(\dfrac{1}{4}\)

Vậy xác suất để chọn được chọn được số 12 hay chọn được số chia hết cho 12 là \(\dfrac{1}{4}\)

a: A={30;31;32;33;34;35}

=>n(A)=6

=>P(A)=1

b: B=rỗng

=>P(B)=0

c: n(C)=1

=>P(C)=1/6

d: D={30;32;34}

=>n(D)=3

=>P(D)=3/6=1/2

3:

n(omega)=8

n(A)=2

=>P=2/8=1/4

4:

n(omega)=6

n(A)=1

=>P=1/6

Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c)...
Đọc tiếp

Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9

1

a: \(\Omega=\left\{1;2;3;4;5;6;7;8;9;10\right\}\)

=>\(n\left(\Omega\right)=10\)

Gọi A là biến cố "Số xuất hiện trên thẻ được chọn là số chia hết cho 2 và chia hết cho 5"

Số vừa chia hết cho 2 và vừa chia hết cho 5 trong các số 1;2;3;...;10 là 10

=>A={10}

=>n(A)=1

\(P_A=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{10}\)

b: Gọi B là biến cố "Số xuất hiện trên thẻ là số chia hết cho 2 và không chia hết cho 5"

Các số chia hết cho 2 và không chia hết cho 5 trong tập hợp \(\Omega\) là 2;4;6;8

=>B={2;4;6;8}

=>n(B)=4

=>\(P\left(B\right)=\dfrac{4}{10}=\dfrac{2}{5}\)

c: Gọi C là biến cố "Số xuất hiện trên thẻ là số chia hết cho 3 và không chia hết cho 9"

Các số chia hết cho 3 nhưng không chia hết cho 9 trong tập hợp \(\Omega\) là 3;6

=>C={3;6}

=>n(C)=2

=>\(P\left(C\right)=\dfrac{2}{10}=\dfrac{1}{5}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Biến cố chắc chắn: B , E

Biến cố không thể: C

Biến cố ngẫu nhiên: A , D

4 tháng 5 2023

a, Có 4 cách chọn ngẫu nhiên

Không có cách chọn nào được số chia hết cho 5

\(\Rightarrow P=0\) ( xác xuất bằng 0)

b, Có 4 cách chọn 1 số ngẫu nhiên

Có 2 cách chọn 1 số nguyên tố đó là 11 , 13

\(\Rightarrow P=\dfrac{2}{4}=\dfrac{1}{2}\)