\(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Lef...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Bài 1 dài dòng quá em :( Rút gọn bớt cũng được thì phải

8 tháng 2 2020

Chị ơi bài 1 em sai cái gì ko ạ ? đk x khác 3 mà đúng ko

27 tháng 11 2019

ơ bài nào v ...................

27 tháng 11 2019

Cho 2 số a,b thỏa mãn \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)Giải :Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)Xảy ra hai trường hợp \(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow...
Đọc tiếp

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Giải :

Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)

                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)

Xảy ra hai trường hợp 

\(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow x\left(x+3\right)\ge0\) 

\(\left(II\right)\hept{\begin{cases}x^2+3x\le0\\x^2+3x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\le0\\x\left(x+3\right)\le-2\end{cases}}}\Rightarrow x\left(x+3\right)\le-2\)

\(\Rightarrow\orbr{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\le-2\end{cases}}\)

+)  Với \(x\left(x+3\right)\ge0\)

=> \(\hept{\begin{cases}x\ge0\\x\ge-3\end{cases}}\)           hoặc                 \(\hept{\begin{cases}x\le0\\x\le-3\end{cases}}\)

=>  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\)

+)  Với  \(x\left(x+3\right)\le-2\)=> \(x^2+3x+2\le0\)  =>  \(\left(x+1\right)\left(x+2\right)\le0\)

=> \(\hept{\begin{cases}x+1\ge0\\x+2\le0\end{cases}}\)                          hoặc                \(\hept{\begin{cases}x+1\le0\\x+2\ge0\end{cases}}\)

=>  \(\hept{\begin{cases}x\ge-1\\x\le-2\end{cases}}\left(removed\right)\)     hoặc                \(\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\Rightarrow-2\le x\le-1\Rightarrow x\in\left\{-2;-1\right\}\)

Vậy với \(y^2\ge0\) thì  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\) hoặc  \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Đẳng thức xảy ra <=> dấu bằng của các trường hợp được xét trên xảy ra    hay   

\(\hept{\begin{cases}y=0\\x\in\left\{0;-1;-2;-3\right\}\end{cases}}\)

 

P/s : Mấy pác xem hộ em :) , sai chỗ nào chỉ em với :V 

0
25 tháng 6 2019

Tìm x,biết:

a/ x + 5x2 =0

⇔x ( 1 + 5x ) = 0

\(\Leftrightarrow\) x = 0 hoặc 1 + 5x = 0

1) x = 0

2) 1+ 5x = 0 \(\Leftrightarrow\) x = \(\frac{-1}{5}\)

Vậy: S = \(\left\{0;\frac{-1}{5}\right\}\)

b/x+1=(x+1)2

\(\Leftrightarrow\) (x+1) - (x+1)2 = 0

\(\Leftrightarrow\) ( x+ 1)(1-x-1) = 0

\(\Leftrightarrow\) (x+1).(-x) = 0

\(\Leftrightarrow\) x+1 = 0 hoặc x = 0

\(\Leftrightarrow\) x= -1 ; 0

Vậy: S=\(\left\{-1;0\right\}\)

c/ x3+x=0

\(\Leftrightarrow\) x(x2 + 1) = 0

\(\Leftrightarrow\) x = 0 hoặc x2 + 1 = 0

Ta có : x2 + 1 \(\ge\) 0 vs mọi x

Vậy: S = \(\left\{0\right\}\)


d/5x(x2)(2x)=0

\(\Leftrightarrow\) 5x(x-2) + (x - 2) = 0

\(\Leftrightarrow\) (x - 2)(5x+1) = 0

\(\Leftrightarrow\) x - 2 = 0 hoặc 5x+ 1 = 0

\(\Leftrightarrow\) x = 2 hoặc x = \(\frac{-1}{5}\)

Vậy: S = \(\left\{\frac{-1}{5};2\right\}\)

g/ x(x4)+(x4)2=0

⇔ (x - 4)( x+x-4) = 0

\(\Leftrightarrow\) x - 4 = 0 hoặc 2x-4=0

\(\Leftrightarrow\) x = 4 hoặc x = 2

Vậy: S= \(\left\{2;4\right\}\)

h/ x23x=0

⇔x (x-3) = 0

\(\Leftrightarrow\) x = 0 hoặc x = 3

Vậy: S = \(\left\{0;3\right\}\)

Vậy: S= \(\left\{0;3\right\}\)
i/4x(x+1)=8(x+1)

4x(x+1)-8(x+1) = 0

\(\Leftrightarrow\) 4(x+1) (x - 2) = 0

\(\Leftrightarrow\) x+1 = 0 hoặc x - 2 = 0

\(\Leftrightarrow\) x= -1 hoặc x = 2

Vậy: S=\(\left\{-1;2\right\}\)

đăng lên làm j z

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-