Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tìm ra thời gian mỗi vòi chảy một mình thì đầy bể, ta có thể sử dụng phương pháp sau:
Tìm ra thời gian hai vòi chảy chung là bao lâu: 4 giờ 48 phút (thời gian hai vòi chảy chung để đầy bể).
Tìm ra thời gian hai vòi chảy riêng là bao lâu: 9 giờ + 5 giờ 12 phút = 14 giờ 12 phút (thời gian hai vòi chảy riêng để đầy bể)
Tìm ra thời gian mỗi vòi chảy một mình: 14 giờ 12 phút / 2 = 7 giờ 6 phút (thời gian mỗi vòi chảy một mình để đầy bể)
Vậy, mỗi vòi chảy một mình trong 7 giờ 6 phút thì đầy bể.
Gọi thời gian chảy một mình đầy bể của vòi 1 và vòi 2 lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/1,5 và 1/4*1/a+1/3*1/b=1/5
=>a=15/4 và b=5/2
- Gọi phần bể vòi thứ nhất, thứ hai chảy được trong 1 phút lần lượt là \(x,y\left(0< x,y< 1\right)\)
Đổi 1h30p=90p
- Hai vòi nước cùng chảy vào 1 bể cạn thì sau 1h30p đầy bể nên:
\(90\left(x+y\right)=1\Rightarrow x+y=\dfrac{1}{90}\left(1\right)\)
- Vòi 1 chảy trong 15p rồi đến vòi 2 chảy tiếp trong 20p được 1/5 bể nên:
\(15x+20y=\dfrac{1}{5}\left(2\right)\)
(1), (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+15y=\dfrac{1}{6}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\5y=\dfrac{1}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{225}\\y=\dfrac{1}{150}\end{matrix}\right.\)
Thời gian vòi 1 chảy để đầy bể: \(1:\dfrac{1}{225}=225\) phút = 3,75h.
Thời gian vòi 2 chảy để đầy bể: \(1:\dfrac{1}{150}=150\) phút=2,5h.
Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.
Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).
Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:
6 * 2x = 1 (bể đầy)
Từ đó, ta có:
12x = 1
x = 1/12
Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.
Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.
Đề 2 vòi nước cùng chảy vào 1 bể nước cạn sau 1 giờ 3 phút (sai mk sửa thành 1 giờ 30 phút )thì đầy bể. Nếu mở riêng từng vòi, thì vòi thứ 1 chảy đầy bể chậm hơn vòi thứ 2 là 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu thì đầy bể
Trong 1 giờ hai vòi cùng chảy vào bể được số phần bể là :
1 : 1,5 = 2/3 (bể)
Trong 1 giờ vòng thứ nhất chậm ơn vòi thứ hai là :
1 : 2 = 1/2 (bể)
Trong một giờ vòi thứ nhất chảy được số phần bể là :
(2/3 - 1/2) : 2= 1/12 (bể)
Trong một giờ vòi thứ hai chảy được số phần bể là :
2/3 - 1/12 = 7/12 (bể)
Nếu mở riêng vòi thứ nhất thì sâu số thời gian đầy bể là :
1 : 1/12 = 12 (giờ)
Nếu mở riêng vòi thứ hai thì sâu số thời gian đầy bể là :
1 : 7/12 = 12/7 (giờ)
Đáp số : 12 giờ ; 12/7 giờ
Gọi thời gian chảy 1 mình đầy bề của vòi 1 và vòi 2 lần lượt là x và y giờ (x;y>0)
Trong 1 giờ hai vòi lần lượt chảy được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần bể
Do 2 vòi cùng chảy trong 6h đầy bể nên: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)
Hai vòi chảy 2h và khóa vòi 1, để vòi 2 chảy 12 giờ đầy bể nên: \(2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+12.\dfrac{1}{y}=1\)
\(\Rightarrow\dfrac{2}{x}+\dfrac{14}{y}=1\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{14}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{9}\\\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=9\\y=18\end{matrix}\right.\)
Gọi thời gian vòi 1 chảy một mình đầy bể là x ( giờ ) (x>0),thời gian vòi 2 chảy một mình đầy bể là y ( giờ ) (y>0)
Trong 1 giờ vòi 1 chảy được 1/x ( bể)
Trong 1 giờ vời 2 chảy được 1/y (bể)
Trong 1 giờ cả hai vòi chảy được 1/12 ( bể )
=> ta có phương trình 1/x + 1/y = 1/12 (1)
Trong 4 giờ vòi 1 chảy được 4/x (bể ), trong 3 giờ vòi 2 chảy được 3/y (bể) được 3/10 bể nên ta có
4/x + 3/y = 3/10 (2)
Từ (1) và (2) ta có hệ phương trình
1/x +1/y =1/12
4/x+3/y = 3/10
(từ đây bạn tự giải tiếp nhé,chỉ cần giải xong hệ phương trinh ra x,y là ra kết quả rồi)
Đổi 2 giờ 55 phút = giờ
Gọi x (giờ) là thời gian chảy riêng đầy bể của vòi thứ nhất.
Điều kiện: x > 35/12
Khi đó thời gian chảy riêng đầy bể của vòi thứ hai là x + 2 (giờ)
trong 1 giờ, vòi thứ nhất chảy được 1/x (bể)
trong 1 giờ, vòi thứ hai chảy được 1/(x + 2 ) (bể)
Giá trị x = - 7/6 không thỏa mãn điều kiện bài toán.
Vậy vòi thứ nhất chảy riêng đầy bể trong 5 giờ
vòi thứ hai chảy riêng đầy bể trong 5 + 2 = 7 giờ
Gọi thời gian chảy riêng của vòi 1 và vòi 2 lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/6 và 10/a+4/b=1
=>a=18; b=9
Đổi 6h40p=20/3h ; 4h24p=22/5h
Mỗi giờ vòi I, II chảy được lần lượt x,y lượng nước tỉ lệ so với bể (x,y>0)
Ta có: 20/3 x + 20/3 y = 1 (a)
Bên cạnh đó, vòi I chảy 4h24p và vòi II chảy 2h được 2/3 bể:
=> 22/5 x + 2y = 2/3 (b)
Từ (a), (b) lập hpt:
\(\left\{{}\begin{matrix}\dfrac{20}{3}x+\dfrac{20}{3}y=1\\\dfrac{22}{5}x+2y=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{72}\left(TM\right)\\y=-\dfrac{1}{360}\left(loại\right)\end{matrix}\right.\)
Xem lại đề em ơi