K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

a/ \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

vì: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)

b/ \(4x^2-12x+11=\left(4x^2-2\cdot2x\cdot3+9\right)+2=\left(2x-3\right)^2+2\)

vì: \(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)

c/ \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\left(đpcm\right)\)

28 tháng 7 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1

Mà :  (x + 1)2 \(\ge0\forall x\)

Nên : (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 luôn dương 

19 tháng 10 2018

\(A=x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1\)

Nhận thấy   \(\left(x+1\right)^2\ge0\)

=>  \(\left(x+1\right)^2+1>0\)

=> A luôn dương

17 tháng 6 2015

a) 4x2 - 12x + 11=4x2-12x+9+2=(2x-3)2+2

vì (2x-3)2\(\ge\)0

nên (2x-3)2+2 dương với mọi x

=>4x2 - 12x + 11luôn luôn dương với mọi x

b) x2 - 2x + y2 + 4y + 6

=x2-2x+1+y2+4y+4+1

=(x-1)2+(y+2)2+1

vì (x-1)2\(\ge\)0 ; (y+2)2\(\ge\)0

nên (x-1)2+(y+2)2+1 dương với mọi x;y

=>x2 - 2x + y2 + 4y + 6  luôn dương với mọi x;y

24 tháng 10 2016

a/B=x2+2x+2013

12 tháng 7 2018

\(A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

19 tháng 10 2020

a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)

các câu khác dùng phương pháp tương tự

19 tháng 10 2020

a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4

Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0

b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4

Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0

c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4

Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0

d) x^2 + y^2 -2x-2y + 2xy +1

= ( x^2 + 2xy + y^2) - 2( x+y) +1

= ( x+y)^2 -2(x+y) +1

= (x +y +1)^2 >=0

g) x^2+y^2+2(x-2y)+6

= (x^2 + 2x +1) + (y^2 -4y+4) +1

= ( x+1)^2 + (y-2)^2 +1

Vì (x+1)^2; (y-2)^2 >= 0 =>  ( x+1)^2 + (y-2)^2 +1>=1>0

23 tháng 9 2020

a) x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

b) 4x2 - 2x + 1 = 4( x2 - 1/2x + 1/16 ) + 3/4 = 4( x - 1/4 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

c) x4 - 3x2 + 9 (*)

Đặt t = x2

(*) <=> t2 - 3t + 9 = ( t2 - 3t + 9/4 ) + 27/4 = ( t - 3/2 )2 + 27/4 = ( x2 - 3/2 )2 + 27/4 ≥ 27/4 > 0 ∀ x ( đpcm )

d) x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

e) x2 + y2 - 2x - 2y + 2xy + 2 = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + 1

                                              = [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + 1 

                                              = [ ( x + y )2 - 2( x + y ) + 12 ] + 1

                                              = ( x + y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

23 tháng 9 2020

a) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

b) \(4x^2-2x+1=4\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

c) \(x^4-3x^2+9=\left(x^4-3x^2+\frac{9}{4}\right)+\frac{27}{4}=\left(x^2-\frac{3}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)

d) \(x^2+y^2-2x-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\left(\forall x,y\right)\)

e) \(x^2+y^2-2x-2y+2xy+2\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1+1\)

\(=\left(x+y-1\right)^2+1>0\left(\forall x,y\right)\)

11 tháng 7 2018

\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)

                                    =  \(\left(2x-6\right)^2-25>=-25\)

                                       

A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)

<=> \(x=3\)

các câu còn lại tương tự

11 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(a,A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

\(b,B=x^2-x+1\)

\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

\(c,C=-x^2+6x-15\)

\(C=-\left(x^2-6x+15\right)\)

\(C=-\left(x^2-6x+4+11\right)\)

\(C=-\left[\left(x-2\right)^2+11\right]\)

\(C=-\left(x-2\right)^2-11\)

Nhận xét:  \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxC=-11\Leftrightarrow x=2\)

\(d,D=\left(x-3\right)\left(1-x\right)-2\)

\(D=x-x^2-3+3x-2\)

\(D=-x^2+4x-5\)

\(D=-\left(x^2-4x+5\right)\)

\(D=-\left(x^2-4x+4+1\right)\)

\(D=-\left[\left(x-2\right)^2+1\right]\)

\(D=-\left(x-2\right)^2-1\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxD=-1\Leftrightarrow x=2\)

2 tháng 6 2018

ko biết làm

2 tháng 6 2018

a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1

       =\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)

\(\Rightarrow\)A dương với mọi x,y

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)