Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
Suy ra: AD//MC và AD=MC
=>AD//MB và AD=MB
hay ABMD là hình bình hành
a: Xét tứ giác ABMD có
O là trung điểm chung của AM và BD
=>ABMD là hình bình hành
b: ta có:ABMD là hình bình hành
=>AD//MB và AD=MB
Ta có: AD//MB
M\(\in\)BC
Do đó: AD//CM
Ta có: AD=MB
MC=MB
Do đó: AD=MC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCD có
AD//CM
AD=CM
Do đó:AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Ta có: AMCD là hình thoi
=>AC vuông góc với DM tại trung điểm của mỗi đường
=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM
Xét ΔABC có
N,K lần lượt là trung điểm của AB,AC
=>NK là đường trung bình của ΔABC
=>NK//BC
=>NK//MH
Xét ΔABC có
M,N lần lượt là trung điểm của BC,BA
=>MN là đường trung bình của ΔABC
=>MN//AC và \(MN=\dfrac{AC}{2}\)
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(HK=\dfrac{AC}{2}\)
=>MN=HK
Xét tứ giác MHNK có MH//NK và MN=HK
nên MHNK là hình thang cân
d:
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(KA=KH=KC=\dfrac{AC}{2}\)
Ta có: ΔHAB vuông tại H
mà HN là đường trung tuyến
nên \(HN=AN=NB=\dfrac{AB}{2}\)
Xét ΔKAN và ΔKHN có
KA=KH
AN=HN
KN chung
Do đó: ΔKAN=ΔKHN
=>\(\widehat{KAN}=\widehat{KHN}=90^0\)
Hình tự vẽ ạ
a)
Ta có:
Tam giác ABC cân tại A (gt)
Đường trung tuyến AM (gt)
=> AM vừa là đường cao vừa là đường trung tuyến vừa là đường phân giác trong tam giác ABC ( tính chất đường trung tuyến trong tam giác cân )
MA là đường cao(cmt)=> AM vuông góc BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
=> I là trung điểm của 2 đường chéo AC và MK
=> Tứ giác AMCK là Hình bình hành
Hình bình hành AMCK có:
Góc AMC vuông (AM vuông góc BC )
=> Hình bình hành AMCK là hình chữ nhật
b)
Vì : Hình bình hành AMCK là hình chữ nhật ⇒ AK // MC ( tính chất hình chữ nhật )
Δ ABC có:
M là trung điểm của BC ( AM là đường trung tuyến )
I là trung điểm của AC (gt)
⇒IM Là đường trung bình của ΔABC
⇒IM // AB (tính chất đường trung bình )
Tứ giác AKMB có:
MK // AB ( IM // AB )
AK // BM ( AK // MC )
⇒ Tứ giác AKMB là Hình Bình Hành
c)
Theo đề ra ta có:
AM là đường trung tuyến
⇒ M là trung điểm của BC
⇒ \(BM=CM=\dfrac{1}{2}BC\)
Mà : BC = 8 cm
⇒ \(BM=CM=\dfrac{1}{2}BC=\dfrac{1}{2}8=4cm\)
Áp dụng định lí Pi ta go vào \(\Delta ACM\) ta có:
\(AC^2=AM^2+CM^2\)
\(\Rightarrow AM^2=AC^2-CM^2=5^2-4^2=9\)
\(\Rightarrow AM=3cm\)
Diện tích tứ giác AMCK là :
\(S_{AMCK}=AM.CM\)
\(\Rightarrow S_{AMCK}=3.4=12cm^2\)
Vậy diện tích tứ giác AMCK là 12 cm vuông
c)
Giả sử tam giác ABC vuông cân
=> Góc A = 90 độ; AB = AC ( tính chất tam giác vuông cân )
AM là đường trung tuyến (gt)
=> AM là đường trung tuyến và là đường phân giác trong tam giác ABC
Tam giác ABC có:
AM Là đường trung tuyến ứng với cạnh huyền BC
=> AM = 1/2BC ( tính chất đường trung tuyến ứng với cạnh huyền ) (1)
Mà :
M là trung điểm của BC => BM = CM =1/2BC (2)
từ 1 và 2 => AM = CM = 1/2 BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
AM = CM (cmt)
=> Tứ giác AMCK là Hình Vuông
Vậy để tứ giác AMCK là hình vuông thì điều kiện cần có của tam giác ABC là tam giác ABC vuông cân
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét tứ giác ABMD có
O là trung điểm của AM
O là trung điểm của BD
Do đó: ABMD là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
a, tứ giác AMCD có: ID=IM;IA=IC
⇒tứ giác AMCD là hình bình hành
Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)
⇒tứ giác AMCD là hình chữ nhật
b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)
mà B∈CM và BM=CM
⇒AD//BM và AD=BM
⇒tứ giác ABMD là hình bình hành