K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

a) CÓ: A = (1-1/42).(1-1/52).(1-1/62)......(1-1/2002)

               =\(\frac{4^2-1^2}{4^2}\)\(\frac{5^2-1^2}{5^2}\)\(\frac{6^2-1^2}{6^2}\)....... \(\frac{200^2-1^2}{200^2}\)

Ta có công thức sau : a2-b2= a2 -ab+ab-b2 

                                            = a(a-b) + b(a-b)

                                            = (a+b)(a-b)

   ÁP DỤNG CÔNG THỨC TRÊN VÀO BÀI TOÁN TA ĐƯỢC : 

  A=  \(\frac{3.5}{4^2}\)\(\frac{4.6}{5^2}\)\(\frac{5.7}{6^2}\)......\(\frac{199.201}{200^2}\)

    = \(\frac{\left(3.4.5.....199\right)\left(5.6.7....201\right)}{\left(4.5.6......200\right)^2}\)

    =    \(\frac{\left(3.4.5.......199\right)\left(5.6.7.....200.201\right)}{\left(4.5.6.....199.200\right)\left(4.5.6......200\right)}\)

    =   \(\frac{3.201}{200.4}\)

   =  \(\frac{603}{800}\)

b)Từ đề bài ta suy ra : B=\(\frac{1.3}{5.7}\).\(\frac{3.5}{7.9}\)\(\frac{5.7}{9.11}\)...... \(\frac{99.101}{103.105}\)

                                      = \(\frac{1.3^2.5^2.7^2......99^2.101}{5.7^2.9^2.11^2....99^2.101^2.103^2.105}\)

                                      =\(\frac{3^2.5}{101.103^2.105}\)

                                       =\(\frac{3}{7500563}\)

18 tháng 9 2021

Bài 1:

a) \(\left|3x-5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))

Bài 2:

a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)

\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)

\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)

 

18 tháng 9 2021

Bài 1:

a) \(\left|3x-5\right|=4\)  (1)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)    \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)           \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)

\(\Leftrightarrow x=-2004\)

16 tháng 7 2021

a) A = \(\dfrac{6n+7}{2n+3}\) = \(\dfrac{6n+9}{2n+3}\) − \(\dfrac{2}{2n+3}\) nguyên

⇔ 2n + 3 ∈ Ư(2) = {-2; -1; 1; 2}

⇔ 2n ∈ {-5; -4; -2; -1}

Vì n nguyên nên n ∈ {-2; -1}

16 tháng 7 2021

undefined

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

7 tháng 7 2019

\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)

\(\Rightarrow3x-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)=0\)

\(\Rightarrow3x-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)=0\)

\(\Rightarrow3x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)

\(\Rightarrow3x-\left(1-\frac{1}{99}\right)=0\)

\(\Rightarrow3x-\frac{98}{99}=0\)

\(\Rightarrow3x=0+\frac{98}{99}\)

\(\Rightarrow3x=\frac{98}{99}\)

\(\Rightarrow x=\frac{98}{99}:3\)

\(\Rightarrow x=\frac{98}{297}\)

7 tháng 7 2019

\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)

\(2\left(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}\right)=2.0\)

\(6x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}=0\)

\(6x-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=0\)

\(6x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)

\(6x-\left(1-\frac{1}{11}\right)=0\)

\(6x-\frac{10}{11}=0\)

\(6x=\frac{10}{11}\)

\(x=\frac{5}{33}\)

3 tháng 9 2023

a) \(\dfrac{2}{3}\left(x+1\right)-\dfrac{4}{5}\left(x+2\right)=\dfrac{35}{2}\)

\(\Rightarrow\dfrac{2}{3}x+\dfrac{2}{3}-\dfrac{4}{5}x-\dfrac{8}{5}=\dfrac{35}{2}\)

\(\Rightarrow\left(\dfrac{2}{3}-\dfrac{4}{5}\right)x+\left(\dfrac{2}{3}-\dfrac{8}{5}\right)=\dfrac{35}{2}\)

\(\Rightarrow-\dfrac{2}{15}x-\dfrac{14}{15}=\dfrac{35}{2}\)

\(\Rightarrow-\dfrac{2}{15}x=\dfrac{553}{30}\)

\(\Rightarrow x=\dfrac{553}{30}:-\dfrac{2}{15}\)

\(\Rightarrow x=-\dfrac{553}{4}\)

b) \(4\left(x-2\right)+5\left(x+1\right)=-15\)

\(\Rightarrow4x-8+5x+5=-15\)

\(\Rightarrow\left(4+5\right)x+\left(-8+5\right)=-15\)

\(\Rightarrow9x-3=-15\)

\(\Rightarrow9x=-15+3\)

\(\Rightarrow x=\dfrac{-12}{9}\)

\(\Rightarrow x=-\dfrac{4}{3}\)

c) \(\dfrac{3}{2}:x+\left(-\dfrac{5}{2}\right)=-\dfrac{7}{3}\)

\(\Rightarrow\dfrac{3}{2}:x=-\dfrac{7}{3}+\dfrac{5}{2}\)

\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{6}\)

\(\Rightarrow x=\dfrac{1}{6}:\dfrac{3}{2}\)

\(\Rightarrow x=\dfrac{1}{9}\)

30 tháng 6 2021

\(A=\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{79800}\right)\)

\(A=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}...\frac{209}{210}\)

\(A=\frac{28}{30}.\frac{40}{42}.\frac{54}{56}...\frac{418}{240}\)

\(A=\frac{4.7}{5.6}.\frac{5.8}{6.7}.\frac{6.9}{7.8}...\frac{19.22}{20.21}\)

\(A=\frac{4.5.6...19}{5.6.7...20}.\frac{7.8.9...22}{6.7.8...21}\)

\(A=\frac{4}{20}.\frac{22}{6}\)

\(A=\frac{11}{15}\)