\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}.\)

\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}....+\frac{2}{48.50}\right)\)

\(=\frac{1}{2}.\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{50-48}{48.50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+.....+\frac{1}{48}-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)

\(B=\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{97.100}\)

\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+....+\frac{100-97}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(C=\frac{8}{7.14}+\frac{8}{14.21}+....+\frac{8}{91.98}\)

\(=\frac{7}{8}.\left(\frac{7}{7.14}+\frac{7}{14.21}+...+\frac{7}{91.98}\right)\)

\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{14}+\frac{1}{14}-\frac{1}{21}+.....+\frac{1}{91}-\frac{1}{98}\right)\)

\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{98}\right)\)

\(=\frac{7}{8}.\frac{13}{98}=\frac{13}{112}\)

a: =>x-8/5=1/20-1/10=-1/20

=>x=-0,05+1,6=1,55

b: =>x-3/2=4/3 hoặc x-3/2=-4/3

=>x=17/6 hoặc x=1/6

c: =>\(\left|x-\dfrac{1}{3}\right|=\dfrac{5}{2}-\dfrac{1}{4}+\dfrac{2}{3}=\dfrac{35}{12}\)

=>x-1/3=35/12 hoặc x-1/3=-35/12

=>x=39/12=13/4 hoặc x=-31/12

d: =>|x-5/8|=3/4

=>x-5/8=3/4 hoặc x-5/8=-3/4

=>x=11/8 hoặc x=-1/8

14 tháng 9 2017

a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)

=   \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)

=     \(\frac{1}{3}-\frac{5}{8}\)

\(\frac{8}{24}-\frac{15}{24}\)

\(\frac{-7}{24}\)

b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)

\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)\(\frac{1}{13}\)

\(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)

=                 \(\frac{1}{8}+\frac{1}{13}\)

=                 \(\frac{13}{104}+\frac{8}{104}\)

=                        \(\frac{23}{104}\)

c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)

\(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)

=         \(16:\left(\frac{-8}{9}\right)\)

=         -18

9 tháng 7 2019

\(A=\frac{99}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)

\(A=\frac{99}{100}-\left(1-\frac{1}{100}\right)\)

\(A=\frac{99}{100}-\frac{99}{100}\)

\(A=\frac{99-99}{100}=0\)

Bài 2 

\(\left(3x+5\right).\left(2x-4\right)=0\)

\(TH1:3x+5=0\)

\(3x=-5\)

\(x=-\frac{5}{3}\)

\(TH2:2x-4=0\)

\(2x=4\)

\(x=2\)

\(\left(x^2-1\right).\left(x+3\right)=0\)

\(\Rightarrow x^2-1=0\)

\(x^2=1\)

\(\Rightarrow x=1\)

\(x+3=0\)

\(x=-3\)

\(5x^2-\frac{1}{2}x=0\)

\(\Rightarrow5x^2-\frac{x}{2}=0\)

\(\Rightarrow5x^2=\frac{5x^2}{1}=\frac{5x^2.2}{2}\)

\(10x^2-x=x.\left(10x-1\right)\)

\(\frac{x.\left(10x-1\right)}{2}=0\)

\(\frac{x.\left(10x-1\right)}{2}.2=0.2\)

\(10x-1=0\)

\(x=\frac{1}{10}=0.100\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{10}=0.100\\x=0\end{cases}}\)

\(\frac{x}{4}-\frac{1}{2}=\frac{3}{4}\)

\(\frac{x}{4}=\frac{3}{4}+\frac{1}{2}\)

\(\frac{x}{4}=\frac{5}{4}\)

\(\Rightarrow x=5\)

\(\frac{1}{8}+\frac{7}{8}:x=\frac{3}{4}\)

\(\frac{7}{8}:x=\frac{3}{4}-\frac{1}{8}\)

\(x=\frac{7}{8}:\frac{5}{8}\)

\(x=\frac{56}{40}=\frac{28}{20}=\frac{14}{10}=\frac{7}{5}\)

20 tháng 9 2017

\(\frac{-7}{5}\)

\(\frac{-53}{12}\)

\(\frac{-15}{8}\)

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

1 tháng 11 2018

Ta có  4A=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

Trừ 4A cho A ta được 

3A = \(1-\frac{1}{2^{100}}\)=> 3A <1 => A<1/3 (đpcm)

Chúc bạn học tốt 

1 tháng 11 2018

Ta có :\(A=\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

\(2A=\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{100}}\)

Lại có :

\(\frac{1}{3}=\frac{1}{2}-\frac{1}{6}\)

Vì \(\frac{1}{2^{100}}< \frac{1}{6}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2^{100}}>\frac{1}{2}-\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{3}\)

Vậy \(A>\frac{1}{3}\)(ĐPCM)

a, \(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+......+\(\frac{1}{97.100}\)= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( \(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+.......+\(\frac{3}{97.100}\))= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1  - \(\frac{1}{4}\)\(\frac{1}{4}\)-\(\frac{1}{7}\)+......+\(\frac{1}{97}\)-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) . \(\frac{99}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{33}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{x}{3}\)\(\orbr{\begin{cases}\frac{33}{100}\\\frac{-33}{100}\end{cases}}\)

Với \(\frac{x}{3}\) = \(\frac{33}{100}\)

\(\Rightarrow\)100x= 33.3

 \(\Rightarrow\)100x=99

\(\Rightarrow\)x=\(\frac{99}{100}\)

Với \(\frac{x}{3}\)=\(\frac{-33}{100}\)

\(\Rightarrow\)100x=-33.3

\(\Rightarrow\)100x=-99

\(\Rightarrow\)x=\(\frac{-99}{100}\)

Vậy x=\(\orbr{\begin{cases}\frac{99}{100}\\\frac{-99}{100}\end{cases}}\)

b, \(\frac{4}{1.5}\)\(\frac{4}{5.9}\)+......+ \(\frac{4}{97.101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{9}\)+......+\(\frac{1}{97}\)-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)

\(\Rightarrow\) \(\frac{100}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)\(\frac{5x-4}{101}\) =\(\orbr{\begin{cases}\frac{100}{101}\\\frac{-100}{101}\end{cases}}\)

Với \(\frac{5x-4}{101}\) =\(\frac{100}{101}\)

\(\Rightarrow\)(5x-4).101=100.101

\(\Rightarrow\)505x-404=10100

\(\Rightarrow\)505x=10504

\(\Rightarrow\)x=\(\frac{104}{5}\)

Với \(\frac{5x-4}{101}\)=\(\frac{-100}{101}\)

\(\Rightarrow\)(5x-4). 101=-100.101

\(\Rightarrow\)505x-404=-10100

\(\Rightarrow\)505x=-9696

\(\Rightarrow\)x=\(\frac{-96}{5}\)

Vậy x=\(\orbr{\begin{cases}\frac{104}{5}\\\frac{-96}{5}\end{cases}}\)