K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)

\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\ 3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\\ 3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\\ 3B-B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\\ 2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{182}{243}\\ B=\dfrac{364}{243}\)

26 tháng 3 2018

\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\\)

\(3B=3\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)

\(3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\)

\(3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\)

\(2B=3B-B\)

\(2B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)

\(2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{729-1}{972}=\dfrac{728}{972}=\dfrac{182}{243}\)

\(B=\dfrac{182}{243}:\dfrac{1}{2}=\dfrac{182\cdot2}{243}=\dfrac{364}{243}\)

2 tháng 5 2022

a. 5/6

b. -6/7

c. 2/3

d. 2/9

e. -63/325

g. 43/20

2 tháng 5 2022

Bạn giải đầy đủ ra đc ko

20 tháng 12 2020

a) Ta có: \(\dfrac{1}{7}+x=-\dfrac{2}{3}\)

\(\Leftrightarrow x=-\dfrac{2}{3}-\dfrac{1}{7}=\dfrac{-14}{21}-\dfrac{3}{21}\)

hay \(x=-\dfrac{17}{21}\)

Vậy: \(x=-\dfrac{17}{21}\)

b) Ta có: \(\dfrac{-2}{3}:x=\dfrac{-5}{6}\)

\(\Leftrightarrow x=\dfrac{-2}{3}:\dfrac{-5}{6}=\dfrac{-2}{3}\cdot\dfrac{6}{-5}=\dfrac{-12}{-15}=\dfrac{4}{5}\)

Vậy: \(x=\dfrac{4}{5}\)

c) Ta có: \(\left(\dfrac{3}{5}-2x\right)\cdot\dfrac{5}{8}=1\)

\(\Leftrightarrow\left(\dfrac{3}{5}-2x\right)=1:\dfrac{5}{8}=\dfrac{8}{5}\)

\(\Leftrightarrow-2x=\dfrac{8}{5}-\dfrac{3}{5}=1\)

hay \(x=-\dfrac{1}{2}\)

Vậy: \(x=-\dfrac{1}{2}\)

d) Ta có: \(\dfrac{3}{4}+\dfrac{2}{5}x=\dfrac{29}{60}\)

\(\Leftrightarrow x\cdot\dfrac{2}{5}=\dfrac{29}{60}-\dfrac{3}{4}=\dfrac{29}{60}-\dfrac{45}{60}=\dfrac{-16}{60}=\dfrac{-4}{15}\)

hay \(x=\dfrac{-4}{15}:\dfrac{2}{5}=\dfrac{-4}{15}\cdot\dfrac{5}{2}=\dfrac{-20}{30}=-\dfrac{2}{3}\)

Vậy: \(x=-\dfrac{2}{3}\)

e) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)

hay \(x=-\dfrac{1}{4}:\dfrac{7}{20}=\dfrac{-1}{4}\cdot\dfrac{20}{7}=\dfrac{-20}{28}=\dfrac{-5}{7}\)

Vậy: \(x=-\dfrac{5}{7}\)

f) Ta có: \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)

\(\Leftrightarrow-x+\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=0\)

\(\Leftrightarrow-x+\dfrac{55}{60}-\dfrac{24}{60}-\dfrac{40}{60}=0\)

\(\Leftrightarrow-x-\dfrac{9}{60}=0\)

\(\Leftrightarrow-x=\dfrac{9}{60}=\dfrac{3}{20}\)

hay \(x=-\dfrac{3}{20}\)

Vậy: \(x=-\dfrac{3}{20}\)

g) Ta có: \(\left|x+\dfrac{1}{3}\right|-4=\dfrac{-1}{2}\)

\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=\dfrac{-1}{2}+4=\dfrac{-1}{2}+\dfrac{8}{2}=\dfrac{7}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{7}{2}\\x+\dfrac{1}{3}=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{21}{6}-\dfrac{2}{6}=\dfrac{19}{6}\\x=-\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{-21}{6}-\dfrac{2}{6}=\dfrac{-23}{6}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{19}{6};-\dfrac{23}{6}\right\}\)

20 tháng 12 2020

cảm ơn cậu cutee gì đó ơi nhahihi

27 tháng 2 2022

Helpp em với ạ^^

b: \(=\dfrac{2}{5}+\dfrac{3}{5}:\dfrac{9-10}{15}-\dfrac{7}{2}\)

\(=\dfrac{4-35}{10}+\dfrac{3}{5}\cdot\dfrac{15}{-1}\)

\(=\dfrac{-31}{10}-9=\dfrac{-31}{10}-\dfrac{90}{10}=-\dfrac{121}{10}\)

c: \(=\dfrac{48-5}{12}\cdot\dfrac{1}{3}+\dfrac{7}{36}=\dfrac{43}{36}+\dfrac{7}{36}=\dfrac{50}{36}=\dfrac{25}{18}\)

d: \(=\dfrac{17}{6}:\dfrac{6}{5}+\dfrac{-7}{12}\)

\(=\dfrac{85}{36}-\dfrac{7}{12}=\dfrac{85}{36}-\dfrac{21}{36}=\dfrac{64}{36}=\dfrac{16}{9}\)

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\) BT2: Tính tổng a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\) BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\) CMR: 1 < S <...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

a: =-21/36-3/36=-24/36=-2/3

b: =43/12*1/2+5/24=43/24+5/24=2

c: =8/9+1/9=1

e: =1-1/4+1/4-1/7+...+1/97-1/100

=1-1/100=99/100

30 tháng 8 2023

\(E=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{1}{12}\)

\(E=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{24}\right)\)

\(E=\dfrac{2}{2}+\dfrac{3}{6}+\left(\dfrac{1}{8}+\dfrac{3}{24}\right)\)

\(E=1+\dfrac{1}{2}+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)\)

\(E=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\dfrac{2}{8}\)

\(E=\dfrac{3}{2}+\dfrac{1}{4}\)

\(E=\dfrac{6}{4}+\dfrac{1}{4}\)

\(E=\dfrac{7}{4}\)

30 tháng 8 2023

Cảm ơn bạn rất nhiều nha

 

17 tháng 8 2018

\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)

\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)

\(D=1+-1+\dfrac{1}{41}\)

\(D=0+\dfrac{1}{41}\)

\(D=\dfrac{1}{41}\)

\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)

\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)

=1/57

\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)